• Title/Summary/Keyword: Turbulence Augmentation

Search Result 26, Processing Time 0.025 seconds

A Study on the Heat Transfer Enhancement by Mesh (MESH에 의한 열전달증진에 관한 연구)

  • Geum, Seong-Min;Jeong, Dong-Su;Kim, Jong-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.716-724
    • /
    • 1998
  • The objective of this research was to investigate the enhancement of heat transfer by mesh in impinging air jet system. The technique used in this research is to place mesh as a turbulence promoter in front of the impinging plate. The heat transfer characteristics with and without mesh, the effect of clearances between impinging plate and mesh, the effect of distance between nozzle exit and impinging plate, and the effect of nozzle exit velocity have been studied experimentally. When mesh was installed in front of the impinging plate, heat transer has been increased due to the acceleration between rectangular holes and divided small jets. When clearances are changed, heat transfer comes to a maximum under the condition of C = 1 mm, irrespective of nozzle exit velocity or H/B. Also the average heat transfer enhancement with mesh has been increased about 44% under the condition of U = 18 m/s, H/B = 2 and C = 1 mm, compared to the result of a flat plate without mesh. And the results of this research are compared with existing heat transfer augmentation method by rectangular or circular rod.

NUMERICAL SIMULATION OF FLOW AND HEAT TRANSFER IN COOLING CHANNEL WITH A STAGGERED V-SHAPED RIB (엇갈린 V-형 리브가 부착된 냉각유로에서의 열유동 수치해석)

  • Myong, H.K.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.125-130
    • /
    • 2008
  • The present study numerically simulates the flow and heat transfer characteristics of rib-induced secondary flow in a cooling channel with staggered V-shaped ribs, extruded on both walls. The rib pitch-to-height ratio (p/h) varies from 2.8 to 10 with the rib-height-to-hydraulic diameter ration ($h/D_h$) of 0.07 and the Reynolds number of 50,000. Shear stress transport (SST) turbulence model is used as a turbulence model. Computational results show that complex secondary flow patterns are generated in the duct due to the snaking flow in the streamwise direction for all tested cases. In the range of p/h=5 to 10 the staggered V-shaped rib gives about 3 times higher heat transfer augmentation than the reference smooth channel with high heat transfer on both front side and the area around the leading edge of the ribs, while the former cases give about 2.5 times higher streamwise pressure drop than the latter ones. Consequently, for the thermal performances, based on the equal pumping power condition, the staggered ones give about 2 times higher values than the latter ones with more uniform heat transfer distribution.

  • PDF

A Study on the Heat Transfer Enhancement by Trapezoid Rod Arrays in 2-Dimensional Impinging Jet System (2차원 충돌 분류계에서 사다리형 로드 배열에 의한 열전달 촉진 효과)

  • Lim, Tae-Soo;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1659-1666
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of air flow and heat transfer caused by trapezoid rods array in impinging air jet system. Trapezoid rods have been set up on front of flat plate to act as a turbulence promoter. Local Nusselt numbers were determined as a function of three parameters : (a) the space from re(Is to heating surface(C=1, 2, 4mm), (b) the pitch between each rods(P=30, 40, 50mm), (c) the distance from nozzle exit to flat plate(H/B=2, 6, 10). The measurements were compared with those of the experiment without trapezoid rods. As a result, when rods are installed in front of the impinging palate, the acceleration of the flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Heat transfer performance was best under the condition of C=1mm and as the pitch is 30mm. The maximum rate of heat transfer augmentation is about 1.9 times greater compared to that without trapezoid rods.

Fault Tolerant Control of Hexacopter for Actuator Faults using Time Delay Control Method

  • Lee, Jangho;Choi, Hyoung Sik;Shim, Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.54-63
    • /
    • 2016
  • A novel attitude tacking control method using Time Delay Control (TDC) scheme is developed to provide robust controllability of a rigid hexacopter in case of single or multiple rotor faults. When the TDC scheme is developed, the rotor faults such as the abrupt and/or incipient rotor faults are considered as model uncertainties. The kinematics, modeling of rigid dynamics of hexacopter, and design of stability and controllability augmentation system (SCAS) are addressed rigorously in this paper. In order to compare the developed control scheme to a conventional control method, a nonlinear numerical simulation has been performed and the attitude tracking performance has been compared between the two methods considering the single and multiple rotor faults cases. The developed control scheme shows superior stability and robust controllability of a hexacopter that is subjected to one or multiple rotor faults and external disturbance, i.e., wind shear, gust, and turbulence.

CFD modelling and the development of the diffuser augmented wind turbine

  • Phillips, D.G.;Richards, P.J.;Flay, R.G.J.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.267-276
    • /
    • 2002
  • Research being undertaken at the University of Auckland has enabled Vortec Energy to improve the performance of the Vortec 7 Diffuser Augmented Wind Turbine. Computational Fluid Dynamic (CFD) modelling of the Vortec 7 was used to ascertain the effectiveness of geometric modifications to the Vortec 7. The CFD work was then developed to look at new geometries, and refinement of these led to greater power augmentation for a given diffuser exit area ratio. Both full scale analysis of the Vortec 7 and a wind tunnel investigation of the development design have been used for comparison with the CFD model.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.594-597
    • /
    • 2009
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There also over-heating on the front surface of pylon without film cooling. The coolant injected parallel to the front surface of the pylon protect the pylon from over-heating.

  • PDF

AUGMENTATION OF TURBULENT HEAT TRANSFER IN A CHANNEL USING A SQUARE ROD (2차원 채널에서 사각봉을 이용한 난류열전달 증가에 대한 수치해석)

  • Kim, Hee-Young;Park, Tae-Seon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.118-124
    • /
    • 2008
  • The characteristics of heat transfer in a two-dimensional channel obstructed by a square rod is investigated by a turbulence model. The computation is made for the six cases of different rod positions between channel walls. To analyze the wall heat transfer, the heat flux of channel walls is set as a constant value and the $k-{\epsilon}-f_{\mu}$ model is employed. Downstream the square rod, the flow recirculation region appear and they are varied by the rod position. The enhancement of the turbulent heat transfer to the wall is induced by the flow instability using a square rod. The averaged heat transfer rate is maximized at a specific rod position. Finally, the effects of square rod on unsteady flows are scrutinized with the frequency analysis.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load (재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가)

  • Hwang, Jin Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, used by the boundary layer wind tunnel test, have conducted a series of wind tunnel experiments, i.e. test the mean velocity profile regarding the surface roughness, turbulence intensity and power spectrum measured by augmentation device. After that, to provide data relevant for the preliminary design step of tall building hazard fluctuating wind loads may be obtained fluctuating pressure coefficients, fluctuating pressure spectrum, autocorrelation coefficients by the boundary layer wind tunnel test. From the results of experiments, this study can be obtained conclusions as follows. 1. We know the fact that the mean velocity profile and the turbulence intensity are well fitted natural wind flow in the boundary layer wind tunnel. 2. The satisfactory agreement of velocity spectrum can be obtained from the compare of fluctuating power spectrum and Von Karman spectrum. 3. We know the fact that the fluctuating pressure spectrums distributed peak at 0.01 Hz-0.1 Hz in the windward surfaces and at 0.1 Hz in the leeward surfaces. 4. We know the fact that the autocorrelation coefficients distributed stationary random processes with application time of hazard fluctuating wind loads.

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating were investigated. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There was also over-heating on the front surface of the pylon without film cooling. The coolant injected parallel to the front surface of the pylon protects the pylon from over-heating.