• Title/Summary/Keyword: Turbopump arrangement

Search Result 3, Processing Time 0.016 seconds

Study of Lay-out Design Concept for Liquid Rocket Engine System (액체로켓엔진 시스템 Lay-out 설계 개념 연구)

  • Chung, Yong-hyun;Lee, Eun-Seok
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.42-45
    • /
    • 2007
  • The process of Lay-out design and assembly for liquid rocket engine was presented and the Lay-out design for main components of liquid Rocket engine system was studied. Vertical direction is recommended in the case of turbopump's arrangement. If the length of pipe between gas-generator with turbopump's turbine is shorter, gas-generator is stable. The arrangements of main valves are recommended as near disposition to combustion chamber, because shut-down process time is shorter. Interference with launch vehicle and structural strength considering gimbal actuator's force and control performance is considered in the case of gimbal actuator's supporter design.

  • PDF

Numerical Analysis of Fluid Flow in a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 내부 유동 해석)

  • Choi, B. S.;Yoon, E. S.;Park, M. R.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.258-263
    • /
    • 2001
  • A fuel pump for a turbopump system has been designed under an international co-work program. The liquid methane fuel pump has an inducer, in front of centrifugal impeller blades, to improve cavitation performance. The three dimensional viscous flow in the fuel pump was investigated through numerical computation. An arrangement of the inducer and impeller has yielded a strong interaction between inducer and impeller blades. The performance of the pump was evaluated from the calculated results. A parametric study was performed for various design variables, and it could oner a database for design parameters to design a fuel pump. A modified design of a fuel pump was proposed by KIMM to improve pump performance.

  • PDF

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.