• Title/Summary/Keyword: Turbofan

Search Result 84, Processing Time 0.018 seconds

Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape (S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석)

  • Jin, Juneyub;Park, Youngseok;Kim, Jaewon;Lee, Changwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.42-55
    • /
    • 2021
  • In this study, the effect of nozzle performance according to the selection of the center line equation. Three of S-type nozzles and three of double S-type nozzles were designed using the curve equation and design parameters, and the nozzle shielding performance was evaluated using the shielding ratio definition. In order to analyze the internal flow of the nozzle, the characteristics of the velocity distribution and pressure distribution were studied, and the nozzle performance was evaluated through the total thrust ratio(f) and the nozzle insulation efficiency coefficient(η). On the other hand, the centerline with a sharply change in curvature at the entrance has a low nozzle performance and a high shielding rate. The double S-type nozzle is excellent nozzle performance and shielding rate by using a smooth centerline at the first curvature.

A Study on Nozzle Performance Influence with Aft-deck Geometry (Aft-deck 형상에 의한 노즐 성능 영향성 연구)

  • Lee, Changwook;Park, Youngseok;Jin, Juneyub;Kim, Jaewon;Choi, Seong Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.42-54
    • /
    • 2021
  • The Aft-deck is being applied to the latest unmanned aircraft for the purpose of shielding the gas turbine exhaust plume or spreading jets to increase the mixing rate with the ambient air, thereby reducing the temperature of exhaust gases. In this study, we would like to find out how the performance of the nozzle is affected by the design variables of the Aft-deck. The design variables of aft-deck are selected as length, expansion angle and upper deck shape. The correlation between thrust and plume shielding rate with the length variable is presented. And the correlation between the thrust and the jet diffusion range is presented according to the expansion angle. In addition, the thrust increase effect is confirmed by the removal of the upper deck and the characteristics of transverse velocity vector determined mixing performance with external flow.

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

Intake Performance Characteristics according to S-duct Cross-section Shape in UAV (무인기 S형 흡기구의 단면 형상에 따른 흡기구 성능 특성)

  • Eom, Hee-Ok;Bae, Ji-Yeul;Lee, Namkyu;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.107-114
    • /
    • 2019
  • In many military aircraft, s-shaped diffusers are used to prevent the fan blades of the turbofan engine from being exposed to the outside. The inlet configurations of the air intakes for military aircraft vary, such as the rectangular intake of the F-22, the crescent-like intake of the F-16, elliptical intake of the MQ-25. In this study, the aerodynamic performance of s-shaped diffusers with various inlet configurations was evaluated using numerical analysis. In addition, the configuration of the middle section of an s-shape duct was changed to the crescent shape, and the effects on its aerodynamic performance were investigated. As a result, there was a slight difference in total pressure recovery according to various inlet configurations with ellipse-shaped middle sections. Also, the total pressure distortion was the lowest in the rectangular inlet shape. When the configuration of the middle section was changed from an ellipse to a crescent shape, the total pressure recovery remained at a high level, except for the ellipse-shaped inlet configuration. In terms of total pressure distortion, the duct with the crescent-shaped middle section showed a significantly more uniform pressure distribution than that with the ellipse-shaped middle section.