• Title/Summary/Keyword: Turbo receiver

Search Result 65, Processing Time 0.026 seconds

A study on threshold detection algorithm for adaptive transmission in underwater acoustic communication (수중 음향 통신에서 적응형 전송을 위한 임계값 검출 알고리즘)

  • Jung, Ji-Won;Kim, In-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.585-591
    • /
    • 2020
  • The adaptive transmission techniques are efficient method for underwater acoustic communication to improve the system efficiency by varying transmission parameters according to channel conditions. In this paper, we construct four transmission modes with different data rates using the convolutional codes, which is freely set to size of information bits. On the receiver side, one critical component of adaptive system is to find which mode has best performance. In this paper, we proposed threshold detection algorithm to decide appropriate mode and applied turbo equalization method based on BCJR decoder in order to improve performance. We analyzed the performance of four modes based on threshold detection algorithm through the lake experiment.

Generation and Protection of Efficient Watermark Signals and Image Quality Preservation in Transmission Channel Using Turbo Coding (효과적인 워터마크 신호의 생성과 보호 및 터보코딩을 이용한 전송채널상에서의 화질 보존)

  • Cho, Dong-Uk;Bae, Young-Lae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.91-98
    • /
    • 2002
  • In this paper, an implementation method of the efficient image transmission stage using watermarking and channel ceding is proposed. Usually, image communication system consists of both a transmitter part and a receiver part. The transmitter part takes charge of copyright protection of the generated image data, and image coding and compression that can deal with channel noises when transmitting. In the transmitter part, we propose a channel coding method which protects both the watermark signal and the original signal for protecting the copyright of image data and solving channel noises when transmitting. Firstly, copyright protection of image data is conducted. For this, image structure analysis is performed, and both the improvement of image quality and the generation of the watermark signal are made. Then, the histogram is constructed and the watermark signals are selected from this. At this stage, by embedding of the coefficients of curve fittness into the lower 4 bits of the image data pixels, image quality degradation due to the embedding of watermark signals are prevented. Finally, turbo coding, which has the most efficient error correction capability in error correction codes, has been conducted to protect signals of watermark and preserved original image quality against noises on the transmission channel. Particularly, a new interleaving method named "semi random inter]easer" has been proposed.

Design of Low-Density Parity-Check Codes for Multiple-Input Multiple-Output Systems (Multiple-Input Multiple-output system을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Chae, Hyun-Do;Han, In-Duk;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.587-593
    • /
    • 2010
  • In this paper we design an irregular low-density parity-check (LDPC) code for multiple-input multiple-output (MIMO) system, using a simple extrinsic information transfer (EXIT) chart method. The MIMO systems considered are optimal maximum a posteriori probability (MAP) detector. The MIMO detector and the LDPC decoder exchange soft information and form a turbo iterative receiver. The EXIT charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the MIMO detector. It is shown that the performance of the designed LDPC code is better than that of conventional LDPC code which was optimized for either the Additive White Gaussian Noise (AWGN) channel or the MIMO channel.

Error Resilience in Image Transmission Using LVQ and Turbo Coding

  • Hwang, Junghyeun;Joo, Sanghyun;Kikuchi, Hisakazu;Sasaki, Shigenobu;Muramatsu, Shogo;Shin, JaeHo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.478-481
    • /
    • 2000
  • In this paper, we propose a joint coding system for still images using source coding and powerful error correcting code schemes. Our system comprises an LVQ (lattice vector quantization) source coding for wavelet transformed images and turbo coding for channel coding. The parameters of the image encoder and channel encoder have been optimized for an n-D (dimension) cubic lattice (D$_{n}$, Z$_{n}$), parallel concatenation fur two simple RSC (recursive systematic convolutional code) and an interleaver. For decoding the received image in the case of the AWGN (additive white gaussian noise) channel, we used an iterative joint source-channel decoding algorithm for a SISO (soft-input soft-output) MAP (maximum a posteriori) module. The performance of transmission system has been evaluated in the PSNR, BER and iteration times. A very small degradation of the PSNR and an improvement in BER were compared to a system without joint source-channel decoding at the input of the receiver.ver.

  • PDF

Distributed satellite-terrestrial diversity schemes using turbo coded STC (터보부호화된 시공간부호를 이용한 위성-지상 분산 다이버시티 기법)

  • Park, Un-Hee;Kim, Young-Min;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.28-33
    • /
    • 2009
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction. Based on these previous study results, we present various cooperative diversity techniques by combing STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

  • PDF

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

A Practical Physical-Layer Network Coding for Fading Channels

  • Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.655-659
    • /
    • 2010
  • In the conventional PNC scheme, the relay node requires simultaneous transmission of two source nodes with strict power control and carrier-phase matching between two received symbols. However, this pre-equalization process at source nodes is not practical in fading channels. In this letter, we propose a novel physical-layer network coding (PNC) scheme with log-likelihood ratio (LLR) conversion for fading channels, which utilizes not pre-equalizer at transmitters (source nodes) but joint detector at receiver (relay node). The proposed PNC requires only channel side information at the receiver (CSIR), which is far more practical assumption in fading channels. In addition, the proposed PNC scheme can use the conventional modulation scheme like M-QAM regardless of modulation order, while the conventional PNC scheme requires reconfiguration of modulation scheme at the source nodes for detection of the received signal at relay node. We consider the combination of the proposed PNC and channel coding, and find that the proposed PNC scheme is easily combined the linear channel codes such as turbo codes, LDPC, and convolutional codes.

Design of Low-Density Parity-Check Codes for Multi-Input Multi-Output Systems (Multi-Input Multi-Output System을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Heo, Jun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.161-162
    • /
    • 2008
  • In this paper we design an irregular low-density parity-check (LDPC) code for a multi-input multi-output (MIMO) system. The considered MIMO system is minimum mean square error soft-interference cancellation (MMSE-SIC) detector. The MMSE-SIC detector and the LDPC decoder exchange soft information and consist a turbo iterative detection and decoding receiver. Extrinsic information transfer (EXIT) charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the input-output transfer chart of the MMSE-SIC detector. It is shown that the performance of the designed LDPC code is much better than that of conventional LDPC code optimized for the AWGN channel.

  • PDF

Power Allocation of Private and Common Information using Han-Kobayashi Scheme in Interference Channels (간섭 채널에서 Han-Kobayashi 방식의 개인신호와 공용신호의 전력 할당)

  • Paek, Du-Jin;Park, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1038-1044
    • /
    • 2010
  • Interference may severely deteriorate performance in wireless communication. Han-Kobayashi scheme splits each user's signal into private and common information so that the receiver removes the other's common signal for partial interference cancellation. This paper proposes an optimal power allocation to private and common signals for Han-Kobayashi scheme by using required SNR in a private information only system. Numerical results show that the proposed power allocation is quite close to the optimal power allocation based on exhaustive searches.

Propose Diversity Algorithm for Mobile Communication System Performance Improve (이동통신 시스템 성능 향상을 위한 다이버시티 알고리즘제안)

  • Lee, Myung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.203-209
    • /
    • 2006
  • In this paper, proposed diversity algorithm that decrease fading. In the wireless channel, if fading occurs due to the multipaths the performance of the system is apparently reduced. This study applied tap-delay receiver. It applied QPSK and OQPSK modulation methods and applied the convolutional codes, where the code rate is 1/2 and 1/3 and the constraint length is 11 and the turbo code where the constraint length is 6. The diversity algorithm proposed in this paper could be compared and analyzed the average error probability of modulation method variable of fading factor to uplink and downlink channels.

  • PDF