• Title/Summary/Keyword: Turbo receiver

Search Result 65, Processing Time 0.028 seconds

Analysis of W-CDMA system with Turbo Code in Realistic Wideband Channel

  • Yoon, Sung-Jae;Hong, Cheong-Ho;Kim, Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.217-220
    • /
    • 2001
  • Turbo codes of long block sizes have been known to show very good performance in an AWGN channel and the turbo code has been strongly recommended as error correction code for IMT-2000 in 3GPP(3$^{rd}$ Ceneration Partnership Project). Recently, turbo codes of short block sizes suitable for real time communication systems have attracted a lot of attention. Thus in this paper we consider the turbo code of 1/3 code rate and short frame size of 192 bits in ITU-R channel model. We analyzed the performance of W-CDMA systems of 10MHz bandwidths employing RAKE receiver with not only MRC diversity but also turbo code..

  • PDF

Adaptive Turbo System (적응 터보 시스템)

  • Choi, Hyun-Woo;Lee, Jae-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, we propose an adaptive turbo system for a varying channel between being frequency-flat and frequency-selective. The proposed system unites a turbo code and a turbo equalization and selects one of two algorithms adaptively to the channel variation with the feedback information from the receiver. The performance of the proposed system in varying channel is evaluated by computer simulation when the feedback delay exists. It is shown that when the feedback delay is moderate, the proposed system outperforms both the conventional turbo code system and turbo equalization system without increasing the complexity.

  • PDF

Decision Feedback Equalization Receiver for DS-CDMA with Turbo Coded Systems

  • Chompoo, T.;Benjangkaprasert, C.;Sangaroon, O.;Janchitrapongvej, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1132-1136
    • /
    • 2005
  • In this paper, adaptive equalizer receiver for a turbo code direct sequence code division multiple access (DSCDMA) by using least mean square (LMS) adaptive algorithm is presented. The proposed adaptive equalizer is using soft output of decision feedback adaptive equalizer (DFE) to examines the output of the equalizer and the Log- maximum a posteriori (Log-MAP) algorithm for the turbo decoding process of the system. The objective of the proposed equalizer is to minimize the bit error rate (BER) of the data due to the disturbances of noise and intersymbol interference (ISI)phenomenon on the channel of the DS-CDMA digital communication system. The computer program simulation results shown that the proposed soft output decision feedback adaptive equalizer provides a good BER than the others one such as conventional adaptive equalizer, infinite impulse response adaptive equalizer.

  • PDF

Application of Block Turbo Code for Improving the Performance of 5 ㎓ IEEE 802,11a WLAN System (5 ㎓대 IEEE 802.11a WLAN 시스템의 성능향상을 위한 블록터보코드(Block Turbo Code)의 응용)

  • 김한종;이병남
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • In this paper we apply block turbo coding at the transmitter and iterative decoding algorithm at the receiver for different operating modes, based on the 5 ㎓ IEEE 802.1 la WLAN system, instead of convolutional coding and soft decision viterbi algorithm to improve forward error correcting performance. Experimental results showed that each coding scheme outperforms coding gains of up to 3.5 ㏈ at the BER of 10$\^$-3/.

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

Performance of W-CDMA System with SOVA-based Turbo Decoder in ITU-R Realistic Channel (ITU-R 실측채널에서 SOVA 기반의 터보부호를 적용한 W-CDMA 시스템의 성능 분석)

  • Jeon Jun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1613-1619
    • /
    • 2004
  • Turbo codes of long block sizes have been known to show very good performance in an AWGN channel and the turbo code has been strongly recommended as error correction code for W-CDMA in 3GPP(3rd Generation Partnership Project). Recently, turbo codes of short block sizes suitable for real time communication systems have attracted a lot of attention. Thus, in this paper we consider the turbo code of 1/3 code rate and short frame size of 192 bits in ITU-R channel model. We analyzed the performance of W-CDMA systems of 10MHz bandwidths employing RAKE receiver with not only MRC diversity but also SOVA-based turbo code.

Frequency Domain Turbo Equalization for Multicode DS-CDMA in Frequency Selective Fading Channel (다중 확산 부호를 사용한 DS-CDMA에 대한 주파수 선택적 페이딩 채널에서 주파수 영역 터보 등화 기법)

  • Lee, Jun-Kyoung;Lee, Taek-Ju;Chae, Hyuk-Jin;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.102-109
    • /
    • 2008
  • The higher data rate of mobile communications has been required for various multimedia services. In DS-CDMA system, one of the solutions to increase the throughput is to use multicode. However, multipath channel destorys the orthogonality of spreading codes, which causes the intercede interference(ICI). ICI gives severe effect on multicode DS-CDMA for BER performance. Conventionally, multicode DS-CDMA system uses the Rake receiver with turbo code, which cannot overcome error floor caused by ICI. In this paper, we propose frequency domain turbo equalization based on minimum mean squared error(FDTE-MMSE) for multicode DS-CDMA in frequency selective channel and evaluate its BER performance by computer simulation. The simulation results show that FDTE-MMSE gives much better performance in high Eb/N0 than the Rake receiver with turbo code in multipath length L>1.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

Performance of Turbo Codes in the Direct Detection Optical PPM Channel (직접 검파 펄스 위치 변조 광통신 채널에서의 터보 부호의 성능)

  • 이항원;이상민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.570-579
    • /
    • 2003
  • The performance of turbo codes is investigated in the direct detection optical PPM channel. We assume that an ideal photon counter is used as an optical detector and that the channel has background noise as well as quantum noise. Resulting channel model is M-ary PPM Poisson channel. We propose the structure of the transmitter and receiver for applying turbo codes to this channel. We also derive turbo decoding algorithm for the proposed coding system, by modifying the calculation of the branch metric inherent in the original turbo decoding algorithm developed for the AWGN channel. Analytical bounds are derived and computer simulation is performed to analyze the performance of the proposed coding scheme, and the results are compared with the performances of Reed-Solomon codes and convolutional codes.

The Performance of Turbo Equalization for Wireless Cellular Systems over Continuous Time Varying Channels (연속 시변채널에서의 이동통신 시스템을 위한 터보 등화기법의 성능)

  • 박종일;최영윤;이동성
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.75-78
    • /
    • 1999
  • The iterative usage of soft outputs increases the performance of digital radio receiver. The feedback of reliability information reduces the channel estimation errors and increases the performance of equalization. This paper investigates the turbo equalization techniques for wireless cellular systems over continuous time varying channel. Simulation results over a GSM channel were presented.

  • PDF