• Title/Summary/Keyword: Turbo decoding

Search Result 217, Processing Time 0.029 seconds

Performance Analysis of the Optimal Turbo Coded V-BLAST technique in Adaptive Modulation System (적응 변조 시스템에서 최적의 터보 부호화된 V-BLAST 기법의 성능 분석)

  • Lee, Kyung-Hwan;Choi, Kwang-Wook;Ryoo, Sang-Jin;Kang, Min-Goo;Hong, Dae-Ki;You, Cheol-Woo;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.385-391
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP (Maximum A Posteriori) Decoder with Iterative Decoding to use as a priori probability in two decoding procedures of V-BLAST: ordering and slicing. Also, comparing with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance has been improved. As a result of simulation, in the Adaptive Modulation systems with several Turbo Coded V-BLAST techniques, the optimal Turbo Coded V-BLAST technique has higher throughput gain than the conventional Turbo Coded V-BLAST technique. Especially, the results show that the proposed scheme achieves the gain of 1.5 dB SNR compared to the conventional system at 2.5 Mbps throughput.

Butterfly Log-MAP Decoding Algorithm

  • Hou, Jia;Lee, Moon Ho;Kim, Chang Joo
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.209-215
    • /
    • 2004
  • In this paper, a butterfly Log-MAP decoding algorithm for turbo code is proposed. Different from the conventional turbo decoder, we derived a generalized formula to calculate the log-likelihood ratio (LLR) and drew a modified butterfly states diagram in 8-states systematic turbo coded system. By comparing the complexity of conventional implementations, the proposed algorithm can efficiently reduce both the computations and work units without bit error ratio (BER) performance degradation.

Iterative V-BLAST Decoding Algorithm in the AMC System with a STD Scheme

  • Lee, Keun-Hong;Ryoo, Sang-Jin;Kim, Seo-Gyun;Hwang, In-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we propose and analyze the AMC (Adaptive Modulation and Coding) system with efficient turbo coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique. The proposed algorithm adopts extrinsic information from a MAP (Maximum A Posteriori) decoder with iterative decoding as a priori probability in two decoding procedures of V-BLAST scheme; the ordering and the slicing. Also, we consider the AMC system using the conventional turbo coded V-BLAST technique that simply combines the V-BLAST scheme with the turbo coding scheme. And we compare the proposed decoding algorithm to a conventional V-BLAST decoding algorithm and a ML (Maximum Likelihood) decoding algorithm. In addition, we apply a STD (Selection Transmit Diversity) scheme to the systems for better performance improvement. Results indicate that the proposed systems achieve better throughput performance than the conventional systems over the entire SNR range. In terms of transmission rate performance, the suggested system is close in proximity to the conventional system using the ML decoding algorithm.

An FPGA Implementation of High-Speed Flexible 27-Mbps 8-StateTurbo Decoder

  • Choi, Duk-Gun;Kim, Min-Hyuk;Jeong, Jin-Hee;Jung, Ji-Won;Bae, Jong-Tae;Choi, Seok-Soon;Yun, Young
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.363-370
    • /
    • 2007
  • In this paper, we propose a flexible turbo decoding algorithm for a high order modulation scheme that uses a standard half-rate turbo decoder designed for binary quadrature phase-shift keying (B/QPSK) modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. Iterative codes such as turbo codes process the received symbols recursively to improve performance. As the number of iterations increases, the execution time and power consumption also increase. The proposed algorithm reduces the latency and power consumption by combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implement the proposed scheme on a field-programmable gate array and compare its decoding speed with that of a conventional decoder. The results show that the proposed flexible decoding algorithm is 6.4 times faster than the conventional scheme.

  • PDF

Upper Bounds for the Performance of Turbo-Like Codes and Low Density Parity Check Codes

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • Researchers have investigated many upper bound techniques applicable to error probabilities on the maximum likelihood (ML) decoding performance of turbo-like codes and low density parity check (LDPC) codes in recent years for a long codeword block size. This is because it is trivial for a short codeword block size. Previous research efforts, such as the simple bound technique [20] recently proposed, developed upper bounds for LDPC codes and turbo-like codes using ensemble codes or the uniformly interleaved assumption. This assumption bounds the performance averaged over all ensemble codes or all interleavers. Another previous research effort [21] obtained the upper bound of turbo-like code with a particular interleaver using a truncated union bound which requires information of the minimum Hamming distance and the number of codewords with the minimum Hamming distance. However, it gives the reliable bound only in the region of the error floor where the minimum Hamming distance is dominant, i.e., in the region of high signal-to-noise ratios. Therefore, currently an upper bound on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix cannot be calculated because of heavy complexity so that only average bounds for ensemble codes can be obtained using a uniform interleaver assumption. In this paper, we propose a new bound technique on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix using ML estimated weight distributions and we also show that the practical iterative decoding performance is approximately suboptimal in ML sense because the simulation performance of iterative decoding is worse than the proposed upper bound and no wonder, even worse than ML decoding performance. In order to show this point, we compare the simulation results with the proposed upper bound and previous bounds. The proposed bound technique is based on the simple bound with an approximate weight distribution including several exact smallest distance terms, not with the ensemble distribution or the uniform interleaver assumption. This technique also shows a tighter upper bound than any other previous bound techniques for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix.

A Study on Iterative MAP-Based Decoding of Turbo Code in the Mobile Communication System (이동통신 시스템에서 MAP기반 터보 부호의 복호에 관한 연구)

  • 박노진;강철호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.62-67
    • /
    • 2001
  • In the recent mobile communication systems, the performance of Turbo Code using the error correction coding depends on the interleaver influencing the free distance determination and the recursive decoding algorithms that is executed in the turbo decoder. However, performance depends on the interleaver depth that need a large time delay over the reception process. Moreover, Turbo Code has been known as the robust ending method with the confidence over the fading channel. The International Telecommunication Union(ITU) has recently adopted as the standardization of the channel coding over the third generation mobile communications such as IMT-2000. Therefore, in this paper, we proposed of the method to improve the conventional performance with the parallel concatenated 4-New Turbo Decoder using MAP a1gorithm in spite of complexity increasement. In the real-time video and video service over the third generation mobile communications, the performance of the proposed method was analyzed by the reduced decoding delay using the variable decoding method by computer simulation over AWGN and fading channels.

  • PDF

Low Power Turbo Decoder Design Techniques Using Two Stopping Criteria (이중 정지 기준을 사용한 저 전력 터보 디코더 설계 기술)

  • 임호영;강원경;신현철;김경호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.39-48
    • /
    • 2004
  • Turbo codes, whose performance in bit error rate is close to the Shannon limit, have been adopted as a part of standard for the third-generation high-speed wireless data services. Iterative Turbo decoding results in decoding delay and high power consumption. As wireless communication systems can only use limited power supply, low power design techniques are essential for mobile device implementation. This paper proposes new effective criteria for stopping the iteration process in turbo decoding to reduce power consumption. By setting two stopping criteria, decodable threshold and undecodable threshold, we can effectively reduce the number of decoding iterations with only negligible error-correcting performance degradation. Simulation results show that the number of unsuccessful error-correction can be reduced by 89% and the number of decoding iterations can be reduced by 29% on the average among 12500 simulations when compared with those of an existing typical method.

Performance Improvement of Turbo Code in low SNR and short frame sizes (낮은 SNR과 짧은 프레임에서 터보코드 성능 개선)

  • 정상연;이용식;심우성;허도근
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.61-64
    • /
    • 1999
  • The turbo code appropriate to IMT-2000 is known to have a good performance whenever the size of frame increases. But it is not appropriate to a sort of video service to need real time because of decoding complexity and long delay time by the size of frame. Therefore this paper proposes decoding decision algorithm of short frame in which soft output is weighted according to iteration number in turbo decoder. Performance of the proposed algorithm is analysed in the AWGN channel when short length of frame is 100, 256, 640. As the result. it is appeared that the proposed decoding decision algorithm has improved in BER other than in the existing MAP decoding algorithm.

  • PDF

A Study on the Enhancement of Turbo Decoder Reducing Communication Error of a Fire Detection System for Marine Vessels (선박용 화재탐지장치의 통신 에러를 감소시키기 위한 수정된 터보코딩 알고리즘 개발에 관한 연구)

  • 정병홍;최상학;오종환;김경식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.375-382
    • /
    • 2001
  • In this study, an adapted Turbo Coding Algorithm for reducing communication error of a fire detection system for marine vessels, especially image transmission via power lone. Because it is necessary that this system communicate larger and faster than previous method, this study carried out enhancement a decoding speed by adaptation CRC with Turbo Code Algorithm, improvement of metric method, and reduction of decoding delay by using of Center-to-Top method. And the results are as follows: (1) Confirmed that a Turbo Code is so useful methods for reducing communication error in lots of noise environments. (2)Proposed technology in this study speed increasing method of Turbo Coding Algorithm proves 2 times faster than normal Turbo Code and communication error reducing as well in the board made by VHDL software & chips ALTERA company.

  • PDF

The Effect of Block Interleaving in an LDPC-Turbo Concatenated Code

  • Lee, Sang-Hoon;Joo, Eon-Kyeong
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.672-675
    • /
    • 2006
  • The effect of block interleaving in a low density parity check (LDPC)-turbo concatenated code is investigated in this letter. Soft decoding can be used in an LDPC code unlike the conventional Reed-Solomon (RS) code. Thus, an LDPC-turbo concatenated code can show better performance than the conventional RS-turbo concatenated code. Furthermore, the performance of an LDPC-turbo code can be improved by using a block interleaver between the LDPC and turbo code. The average number of iterations in LDPC decoding can also be reduced by a block interleaver.

  • PDF