• Title/Summary/Keyword: Turbo Codes

Search Result 207, Processing Time 0.022 seconds

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF

(Turbo Decoder Design with Sliding Window Log Map for 3G W-CDMA) (3세대 이동통신에 적합한 슬라이딩 윈도우 로그 맵 터보 디코더 설계)

  • Park, Tae-Gen;Kim, Ki-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.73-80
    • /
    • 2005
  • The Turbo decoders based on Log-MAP decoding algorithm inherently requires large amount of memory and intensive complexity of hardware due to iterative decoding, despite of excellent decoding efficiency. To decrease the large amount of memory and reduce hardware complexity, the result of previous research. And this paper design the Turbo decoder applicable to the 3G W-CDMA systems. Through the result of previous research, we decided 5-bits for the received data 6-bits for a priori information, and 7-bits for the quantization state metrics. The error correction term for $MAX^{*}$ operation which is the main function of Log-MAP decoding algorithm is implemented with very small hardware overhead. The proposed Turbo decoder is synthesized in $0.35\mu$m Hynix CMOS technology. The synthesized result for the Turbo decoder shows that it supports a maximum 9Mbps data rate, and a BER of $10^{-6}$ is achieved(Eb/No=1.0dB, 5 iterations, and the interleaver size $\geq$ 2000).

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

Design of Low-Density Parity-Check Codes for Multiple-Input Multiple-Output Systems (Multiple-Input Multiple-output system을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Chae, Hyun-Do;Han, In-Duk;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.587-593
    • /
    • 2010
  • In this paper we design an irregular low-density parity-check (LDPC) code for multiple-input multiple-output (MIMO) system, using a simple extrinsic information transfer (EXIT) chart method. The MIMO systems considered are optimal maximum a posteriori probability (MAP) detector. The MIMO detector and the LDPC decoder exchange soft information and form a turbo iterative receiver. The EXIT charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the MIMO detector. It is shown that the performance of the designed LDPC code is better than that of conventional LDPC code which was optimized for either the Additive White Gaussian Noise (AWGN) channel or the MIMO channel.

Robust Video Transmission System Employing Byte-Aligned Variable-Length Turbo Codes and Its Code-Rate Adaptation over Mobile Communication Channels (이동통신 환경에서 바이트 정렬 가변 길이 터보 코드의 적응 부호화율 적용을 통한 동영상 전송 시스템)

  • 이창우;김종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.921-930
    • /
    • 2004
  • In this paper, a robust video transmission system is proposed. To effectively prevent the corruption of video stream and its propagation in spatial and temporal domains, a version of turbo code, so-called as byte-aligned variable-length turbo code, is applied. Protection performance of the proposed turbo code is first evaluated by applying it to GOB-based variable-size ITU-T H.263+ video packets, where the protection level is statically controlled based on the joint source-channel criteria. This protection is then extended to support the adaptation of code ratio to best match the time-varying channel condition. The time-varying Rayleigh fading channel is modelled considering the correlation of the fading channel. The resulting performance comparison with the static turbo code as well as the conventional RCPC code clearly demonstrates the possibility of the proposed adaptation approach for the time-varying correlated Rayleigh-fading channel.

A Study on Iterative MAP-Based Decoding of Turbo Code in the Mobile Communication System (이동통신 시스템에서 MAP기반 터보 부호의 복호에 관한 연구)

  • 박노진;강철호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.62-67
    • /
    • 2001
  • In the recent mobile communication systems, the performance of Turbo Code using the error correction coding depends on the interleaver influencing the free distance determination and the recursive decoding algorithms that is executed in the turbo decoder. However, performance depends on the interleaver depth that need a large time delay over the reception process. Moreover, Turbo Code has been known as the robust ending method with the confidence over the fading channel. The International Telecommunication Union(ITU) has recently adopted as the standardization of the channel coding over the third generation mobile communications such as IMT-2000. Therefore, in this paper, we proposed of the method to improve the conventional performance with the parallel concatenated 4-New Turbo Decoder using MAP a1gorithm in spite of complexity increasement. In the real-time video and video service over the third generation mobile communications, the performance of the proposed method was analyzed by the reduced decoding delay using the variable decoding method by computer simulation over AWGN and fading channels.

  • PDF

Distributed satellite-terrestrial diversity schemes using turbo coded STC (터보부호화된 시공간부호를 이용한 위성-지상 분산 다이버시티 기법)

  • Park, Un-Hee;Kim, Young-Min;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.28-33
    • /
    • 2009
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction. Based on these previous study results, we present various cooperative diversity techniques by combing STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

  • PDF

An Efficient FTN Decoding Method using Separation of LDPC Decoding Symbol in Next Generation Satellite Broadcasting System (차세대 위성 방송 시스템에서 LDPC 복호 신호 분리를 통한 효율적인 FTN 복호 방법)

  • Sung, Hahyun;Jung, Jiwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • To increase throughput efficiency and improve performance, FTN(Faster Than Nyquist) method and LDPC(Low Density Parity Code) codes are employed in DVB-S3 system. In this paper, we proposed efficient turbo equalization model to minimize inter symbol interference induced by FTN transmission. This paper introduces two conventional scheme employing SIC(Successive Interference Cancellation) and BCJR equalizer. Then, we proposed new scheme to resolve problems in this two conventional scheme. To make performance improved in turbo equalization model, the outputs of LDPC and BCJR equalizer are iteratively exchange probabilistic information. In fed LDPC outputs as extrinsic informa tion of BCJR equalizer. we split LDPC output to separate bit probabilities. We compare performance of proposed scheme to that of conventional methods through using simulation in AWGN(Additive White Gaussian Noise) channel. We confirmed that performance was improved compared to conventional methods as increasing throughput parameters of FTN.

Efficient Hybrid ARQ schemes for Wireless Communication Systems

  • Ryoo, Sun-Heui;Kim, Soo-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.342-345
    • /
    • 2004
  • An efficient hybrid ARQ scheme based on the rate compatible block turbo codes has been proposed, and its performance has been analyzed. System efficiency is improved by means of adaptive rate code transmission using channel information, trading off bit rate for channel codes, with resulting energy saving. The rate adaptation scheme improves power efficiency while keeping packet delay minimized. On the other hand, power dependant strategies reduce power consumption. Simulation results show that the benefits obtained are very encouraging. The modified hybrid ARQ schemes with the channel information and efficient retransmission structures highly improve the throughput performance in the satellite communication system. Therefore, proposed schemes could be used in future communication systems.

  • PDF