• 제목/요약/키워드: Turbine-Generator

검색결과 997건 처리시간 0.03초

원자력 발전소 터빈-발전기 고진동 저감에 대한 고찰 (Analysis of High Vibration in Nuclear Turbine-Generator)

  • 이우광;고우식;김계연;구재량
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.46-50
    • /
    • 2007
  • The nuclear power plant's turbine-generator system had been suffered form some problems, such as high shaft vibration, generator casing crack, stator coil water leakage, high $H_2$ gas consumption rate. Those kinds of problems were related to high vibration. So nuclear plant decided to replace generator in order to reduce rotor high vibration and high thermal sensitivity. A series of effort to reduce turbine-generator vibration was carried out as followings, first of all, replacement of generator, analysis of turbine-generator vibration, LP B rotor shop balancing, improvement of LP B/Gen coupling run-out, improvement of Generator basement and field balancing. Finally the nuclear turbine-generator's shaft vibration was reduced below $60{\mu}m$ from over $200{\mu}m$ which is very excellent vibration in nuclear turbine-generator in Korea.

  • PDF

터빈 블레이드 모델링을 통한 터빈 발전기 축 시스템의 기계적 토크 응답 분석 (Analysis of Turbine-Generator Shaft System Mechanical Torque Response based on Turbine Blade Modeling)

  • 박지경;정세진;김철환
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1269-1275
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. There are various factors that affects torsional interaction such as fault, circuit breaker switching and generator mal-synchronizing, etc. Fortunately, we can easily simulate above torsional interaction phenomena by using ElectroMagnetic Transient Program (EMTP). However, conventional EMTP shows the incomplete response of super- synchronous torsional mode since it does not consider turbine blade section. Therefore, in this paper, we introduced mechanical-electrical analogy for detailed modeling of turbine-generator shaft system including low pressure turbine blade section. In addition, we derived the natural frequencies of modeled turbine-generator shaft system including turbine blade section and analyzed the characteristics of mechanical torque response at shaft coupling and turbine blade root area according to power system balanced/unbalanced faults.

터보 발전기 시스템을 위한 정 출력 제어 방식 시동기 구현 (Implementation of Constant Power Controlled Starter for A Turbo Generator System)

  • 권정혁;양현섭;노민식;차영범
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.219-222
    • /
    • 2003
  • Turbo generator system need starter for gas turbine engine. Turbo generator has high rate gearbox for reduce rotating speed. Because a conventional generator could not operate same speed of gas turbine engine. But Recently turbo generator system is directly connected a gas turbine engine with a super high-speed generator. In this paper, starter driver are implemented direct coupled turbo generator system, Which is directly connected 100kW, 60,000rpm gas turbine engine and 25kW 60,000rpm super high speed generator.

  • PDF

증기터빈의 기동조건과 성능개선이 터빈의 진동에 미치는 영향 (Effect on Vibration of Start-up Condition and Retrofit of Steam Turbines)

  • 이혁순;정혁진;송우석
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.1-7
    • /
    • 2011
  • The analysis shows that the vibration is one of the main reasons of turbine failure. Especially, the problems caused by vibration occur right after retrofit of the turbine-generator and restarting the turbine. Through the case study of high vibration caused by after the turbine trip and restart, turbine vibration was identified to be influenced by startup condition. Turbine startup at high casing temperature right after unscheduled turbine trip cause radial expansion in rotor by contraction in axial direction, while casing continues to contract by steam flowing into casing. Consequently, gap between rotor and casing decrease until to metal contact to cause high vibration. Through the case study of high vibration of turbine-generator system after generator retrofit, it was identified that generator replacement could cause high vibration in turbine-generator system if the influence of generator replacement on entire system was not considered properly. To prevent startup delay caused by high vibration, it is important to keep the gaps at the design standard and start the turbine after thermal equilibrium.

농업용 보의 수차 발전기 효율 분석 (Efficiency Analysis for Water Turbine Generator of Agricultural Reservoir)

  • 김종겸
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1223-1227
    • /
    • 2013
  • If the factory test efficiency and field operation efficiency of water turbine are different from each other, issues for efficiency warranty can be raised. So, This paper shows the result for comparative analysis of field operating efficiency vs plant testing efficiency of the water turbine generator installed in agricultural reservoir. The efficiency of the induction generator is analyzed by the change of rotational speed with the parameter obtained by test, the efficiency of water turbine is calculated by the change of head with the design flow. Efficiency deviation of induction generator is lower but the variation of developed power is pretty high near the rated speed and the efficiency variation of water turbine is high by the fluctuation of head for constant flow. It was found that factory test efficiency and total efficiency of water turbine generator calculated according to the rotational speed are very close.

터빈-발전기 조속기의 동특성 시험시스템 개발에 관한 연구 (A study on the Turbine-Generator Governor Dynamic Characteristic Testing System)

  • 최형주;이흥호
    • 전기학회논문지
    • /
    • 제61권10호
    • /
    • pp.1399-1411
    • /
    • 2012
  • The grid frequency is controlled cooperatively by the governor of the Turbine-Generator and the automatic generation controller(AGC) of the KPX(Korea Power Exchange). It is a basic requirement that the reliability of the governor is verified to enhance the power system stability but it is not easy to confirm the response characteristics of the governor because all generators are operated in the grid system that has the constant voltage and frequency. Therefore, it is necessary to study a new test method in order to examine the governor dynamic characteristic in the similar fault conditions. A study has shown that it is verified to simulate the turbine-generator power control system, the governor response characteristic under limited conditions and contribution of AGC with the gas turbine generator simulation model as well as demonstrate the dynamic response of the governor with the developed governor dynamic characteristic tester based on digital controller while the turbine-generator is connected to the grid system. This tester is constructed by the built-in functions of the turbine-generator main controller. In this treatise, the theoretical background, development method and the results of both simulations and demonstrations are described as another way to verify the turbine-generator governor dynamic characteristics.

터빈 발전기 축 시스템의 다중 질량체 모델링을 통한 비틀림 응답 구현 (Realization of Torsional Response based on Multi-mass Modeling of Turbine-Generator Shaft System)

  • 박지경;조규정;손승현;정세진;김철환
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.201-207
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. If torsional shaft torque exceeds a certain threshold, the loss of fatigue life may occur and, in the end, it is possible to happen permanent shaft failure. Therefore, it is required to understand the torsional response for reliable operation and protection of turbine-generator shaft system. In this paper, we introduced multi-mass modeling method of turbine-generator shaft system using mechanical-electrical analogy and state-space equation to verify the transient torsional response based on ElectroMagnetic Transient Program (EMTP). These simple realization methods for turbine-generator shaft torsional response could be helpful to understand torsional interaction phenomena and develop the transient torque reduction countermeasures for turbine-generator shaft system.

LNGC선에 설치된 터빈 구동 발전기의 진동 문제 사고 사례 (A Case Study for Turbine Generator Vibration in LNGC)

  • 지승현;정은수
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.237-238
    • /
    • 2006
  • Vibration incidents hardly happen when a turbine generator usually installed in LNG carrier is operated, different from diesel engine generator. The purpose of this paper is to introduce an actual vibration incident, which hardly occurred in case of turbine generator, and describe all possible countermeasures to prevent from vibrations during operation.

  • PDF

Studies on a Wind Turbine Generator System using a Shaft Generator System

  • Tatsuta Fujio;Tsuji Toshiyuki;Emi Nobuharu;Nishikata Shoji
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.177-184
    • /
    • 2006
  • In this paper a new dc-link type wind turbine generator system using a shaft generator system, which is widely used for power sources in a ship, is proposed. The basic configuration of the proposed wind turbine generating system is first explained. And the equations expressing the system are derived. Then the steady-state characteristics of the generating system are discussed. We use an experimental system that can simulate the characteristics of a wind turbine in this study, because it is hard to operate an actual wind turbine in a laboratory. In addition, the transient responses of this system are investigated when the velocity of the wind is changed. It is shown that experimental results were very close to the simulated ones, supporting the usefulness of the theory.

HVDC단에 연결된 터빈-발전기의 비틀림 스트레스 해석 (Torsional Stress Analysis of Turbine-Generator Connected to HVDC System)

  • 김찬기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.416-426
    • /
    • 2001
  • This paper deals with the impact of an inverter station on the torsional dynamics of turbine-generator which is located at the inverter side of a HVDC-AC network power system. The studies show that the torsional stress of turbine-generator depends on the AC network fault locations because of the commutation failures of inverter station. And the torsional stress induce fatigue in the shaft material and reduce the shaft life-time. So, the purpose of this paper is to analysis the torsional stress of turbine-generator shaft at inverter side, to find the checked points of turbine-generator. The EMTDC program is used for the simulation studies.

  • PDF