• Title/Summary/Keyword: Turbine rotor blade

Search Result 338, Processing Time 0.031 seconds

Wind Turbine Simulator Implementation Considering Tower Effect of Rotor Blade (풍력발전기 회전자 블레이드의 타워효과를 고려한 풍차 시뮬레이터의 구현)

  • Oh, Jeong-Hun;Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.247-250
    • /
    • 2003
  • To get more realistic wind turbine torque characteristic, it is important to consider many parameters about wind turbine system. One of them is the tower effect which is occurred when a blade is bypassing the wind turbine tower and influences shaft torque fluctuation. In this paper, to emulate the similar torque performance of wind turbine, the wind turbine simulation and experiment with torque fluctuation by blade tower effect are implemented and verified. The simulation model is based on MATLAB Simulink.

  • PDF

A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part2 (풍력터빈의 구조특성 평가에 관한 연구-Part2)

  • Lee, Kyoung-Soo;Huque, Ziaul;Kommalapati, Raghava;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.

A Study of the Design Technology for Developing a 100kW Class Steam Turbine (100 kW급 증기터빈 설계기술 개발에 관한 연구)

  • Kim, Young-Cheol;Ahn, Kook-Young;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2009
  • Small scale steam turbines are used as mechanical drivers in chemical process plant or power generators. In this study, a design technology was developed for a 100kW class steam turbine which will be used for removing $CO_2$ from the emission gas on a reheated cycle system. This turbine is operated at a low inlet total pressure of $5\;kgf/cm^2$. It consists of two stages and operates at the partial admission. For the meanline analysis, a performance prediction method was developed and it was validated through the performances on the operating small steam turbines which are using at plants. Their results showed that the output power was predicted within 10% deviation although the steam turbines adopted in this analysis were operated at different flow conditions and rotor size. The turbine blades was initially designed based on the computed results obtained from the meanline analysis. A supersonic nozzle was designed on the basis of the operating conditions of the turbine, and the first stage rotor was designed using a supersonic blade design method. The stator and second stage rotor was designed using design parameters for the blade profile. Finally, Those blades were iteratively modified from the flow structures obtained from the three-dimensional flow analysis to increase the turbine performance. The turbine rotor system was designed so that it could stably operate by 76% separation margin with tilting pad bearings.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.

A Surface Adaptive Moving Mechanism for Wind Turbine Blade Maintenance Robot (풍력발전기 유지보수로봇을 위한 표면 적응 이동 시스템)

  • Kim, Byunggon;Park, Sora;Jun, Minsoek;Jun, Kyungtae;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.969-975
    • /
    • 2013
  • As energy shortage is getting more serious, wind energy source is more promoted around the world. Blade is a key component of wind turbine. Local breakages and/or contamination in the blade bring degradation in aerodynamic efficiency and life-time. However, it is not easy and even dangerous for human workers to access the blade for inspection and maintenance since its size is huge and located at high mountains and rough sea, which are windy places. This paper deals with a novel moving mechanism that efficiently carries human workers or robots to the wind turbine blade. The proposed mechanism utilizes flexible tube with pressurized air that rolls and climbs over the blade surface. So, the tube naturally adapts the changing surface of the blade and acts no harm to it. This paper discusses about its concept, detail design, and advantages. The feasibility of the proposed mechanism is proved through experiments prototype.

Wind tunnel effect analysis for MEXICO wind turbine model (MEXNEXT 풍력발전기 풍동 시험에 대한 풍동 영향 분석)

  • Shin, Hyungki;Lim, Jongsoo;Jang, Moonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • In this research, CFD calculation was implemented to analyze wind tunnel effect or rotor experiment in wind tunnel. One case included model wind turbine and all wind tunnel geometries. The other case include only rotor and nacelle system. Star-CCM+ was used for CFD analysis and rigid body motion around rotor area was applied to simulate rotating rotor. As for turbulence model, K-omega SST was used. The results were compared in 15m/s inflow condition. These results shows a good agreement with the measurement. Then, the result without wind tunnel was slightly different to the result with wind tunnel. Thus, in the case of Mexnex wind tunnel measurement, the wind tunnel don't affect the measurement result. Then, this wind tunnel and rotor size ratio can be reference for wind tunnel experiment of wind turbine rotor.

  • PDF

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

A Numerical Study of Blade Sweep Effect in Supersonic Turbine Rotor (초음속 터빈의 로터 블레이드 스윕 효과에 대한 수치적 연구)

  • Jeong, Soo-In;Jeong, Eun-Hwan;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.830-834
    • /
    • 2011
  • In this study, we performed three-dimensional CFD analysis to investigate the effect of the rotor blade sweep of a partial admission supersonic turbine on the stage performance and the flow field. The computations are conducted for three different sweep cases, No sweep(NSW), Backward sweep(BSW), and Forward sweep(FSW), using flow analysis program, $FLUENT^{TM}$ 6.3 Parallel. The results show that BSW model give the effect on the reducing of mass flow rates of tip leakage and the increasing of t-to-s efficiency.

  • PDF

Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine)

  • Bae, Y.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.95-111
    • /
    • 2011
  • Increasing numbers of floating offshore wind turbines are planned and designed these days due to their high potential in massive generation of clean energy from water depth deeper than 50 m. In the present study, a numerical prediction tool has been developed for the fully-coupled dynamic analysis of FOWTs in time domain including aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the focus of the present study is paid to the dynamic coupling between the rotor and floater and the coupled case is compared against the uncoupled case so that their dynamic coupling effects can be identified. For this purpose, a mono-column mini TLP with 1.5MW turbine for 80m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given collinear wind-wave condition. When compared with the uncoupled analysis, both standard deviations and maximum values of the floater-responses/tower-accelerations and tether tensions are appreciably increased as a result of the rotor-floater dynamic coupling, which may influence the overall design including fatigue-life estimation especially when larger blades are to be used.

Review on tidal stream energy and blade designs for tropical site conditions and a look at Philippines' future prospects

  • Mark Anthony Rotor;Hamid Hefazi;Nelson Enano, Jr.
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.247-268
    • /
    • 2023
  • Tidal stream energy extraction remains a site-specific resource due to the "first generation" criteria requiring high-velocity tidal streams. Most studies on tidal energy and turbine blade design heavily focus on installation sites with higher velocity conditions that are non-existent in tropical countries such as the Philippines. To shorten this gap, this review paper tackles tidal turbine design considerations for low-energetic regions such as the tropics. In-depth discussions of operating principles, methods of analysis, and designs of tidal turbine blades are presented. Notable tidal stream projects around the world are also mentioned in the paper. Also, it provides a perspective on the potential of this renewable energy to produce electricity for various sites in the Philippines. Finally, the paper emphasizes the need for new tidal turbine blade designs to be viable in tropical regions, such as the Philippines.