• Title/Summary/Keyword: Turbine model

Search Result 1,307, Processing Time 0.025 seconds

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.

Wind Turbine Wake Model by Porous Disk CFD Model (다공 원반 CFD 모델을 이용한 풍력발전기 후류 해석 연구)

  • Shin, Hyungki;Jang, Moonseok;Bang, Hyungjun;Kim, Soohyun
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.68-74
    • /
    • 2013
  • Offshore wind farm is being increased since there are much trouble to develop onshore wind farm. But in the offshore, wind turbine wake does not dissipate less than onshore wind turbine because of low turbulence level. Thus this remained wake interacted to other wind turbine. This interaction reduces energy production in wind farm and have a bad influence on fatigue load of wind turbine. In this research, CFD model was constructed to analyze wake effect in offshore wind farm. A method that wind turbine rotor region was modelled in porous media was devised to reduce computation load and validated by comparison with Horns Rev measurement. Then wake interaction between two wind turbine was analyzed by devised porous model.

Study on 4-degree-of-freedom Mathematical Model for Simulation of Wind Turbine System at Initial Design Stage (풍력발전기 초기단계 모사실험을 위한 4자유도 수학적 모형에 대한 연구)

  • Shin, Yun-Ho;Moon, Seok-Jun;Chung, Tae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.681-689
    • /
    • 2013
  • The commercial tools to simulate the non-linear dynamic characteristics of wind turbine system are various but, the tool take much time to simulate the control algorithm and require many input variables. In this paper, the procedures to derive the simplified 4-degree-of-freedom mathematical model of a 2-MW wind turbine which could be used at the initial design stage of the controller are proposed based on RISO's suggested method. In this model, the 1st tower fore-after bending motion and 1st blade flapping motion are also considered in addition to the rotor-generator rotation motion in the 2-DOF model. The effectiveness of the 4-DOF model is examined comparing with the 2-DOF model and verification of the simplified model is accomplished through modal analysis for whole wind turbine system.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

Cavitation Characteristics of a Pump-turbine Model by CFD Analysis

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • The pumped storage plant operates with quick change of the discharge as well as quick changes between pump mode and turbine mode. This study focuses on the cavitation analysis of a pump-turbine model because in turbo-machinery, cavitation can reduce the performance and shorten service life. The pump-turbine model system consists of 7 blades, 20 stay vanes (including tongue) and 20 guide vanes. This study adopts the Rayleigh-Plesset model as a cavitation model, which illustrates cavitation by using the air volume fraction method. The pump mode and turbine mode at the operating condition of partial loading, normal and excessive loading are analyzed to investigate the cavitation performance of the pump-turbine. It was observed that this pump-turbine design showed very good cavitation characteristics with no cavitation bubbles in all operating conditions. Overall value of air volume fraction of both mode at different operating condition are lower than 1, which confirms low possibility of cavitation occurrence at current situation.

Towards a digital twin realization of the blade system design study wind turbine blade

  • Baldassarre, Alessandro;Ceruti, Alessandro;Valyou, Daniel N.;Marzocca, Pier
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.271-284
    • /
    • 2019
  • This paper describes the application of a novel virtual prototyping methodology to wind turbine blade design. Numeric modelling data and experimental data about turbine blade geometry and structural/dynamical behaviour are combined to obtain an affordable digital twin model useful in reducing the undesirable uncertainties during the entire turbine lifecycle. Moreover, this model can be used to track and predict blade structural changes, due for example to structural damage, and to assess its remaining life. A new interactive and recursive process is proposed. It includes CAD geometry generation and finite element analyses, combined with experimental data gathered from the structural testing of a new generation wind turbine blade. The goal of the research is to show how the unique features of a complex wind turbine blade are considered in the virtual model updating process, fully exploiting the computational capabilities available to the designer in modern engineering. A composite Sandia National Laboratories Blade System Design Study (BSDS) turbine blade is used to exemplify the proposed process. Static, modal and fatigue experimental testing are conducted at Clarkson University Blade Test Facility. A digital model was created and updated to conform to all the information available from experimental testing. When an updated virtual digital model is available the performance of the blade during operation can be assessed with higher confidence.

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT) (횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구)

  • Ha, Jin-Ho;Kim, H.C.;Kim, Chul-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

Performance Analysis of Turbofan Engine for Turbine Cooling Design (터빈 냉각설계를 위한 터보팬 엔진의 성능해석)

  • Kim, Chun-Taek;Rhee, Dong-Ho;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.27-31
    • /
    • 2012
  • Turbine inlet temperature is steadily increasing to achieve high specific thrust and efficiency of gas turbine engines. Turbine cooling technology is essential to increase turbine inlet temperature. For this study, a small or medium sized aircraft engine of 10,000 lbf class with the turbine inlet temperature of $1,400^{\circ}C$, the engine overall pressure ratio of 32.2, and the bypass ratio of 5 was set as the baseline model and its performance analysis was performed at the design point. The engine has the performance of 10,013 lbf thrust and the specific fuel consumption of 0.362 lbm/hr/lbf. The thrust and the specific fuel consumption of the baseline model were compared with those of similar class engines. Based on these results, the turbine design requirements were assigned. In addition, the parametric analysis of the engine, related to aerodynamic and cooling design of the high pressure turbine, was performed. Based on the baseline model engine, the influence of turbine inlet temperature, cooling flow ratio, and high pressure turbine efficiency variations on the engine performance was analyzed.