• Title/Summary/Keyword: Turbine generator

Search Result 997, Processing Time 0.027 seconds

Development of Intelligent Digital Governor System for Steam Turbine Generator in Buk-Cheju Thermal Power Plant (북제주 화력 발전소 스팀 터빈 발전기용 인텔리전트 디지털 조속기 개발)

  • 전일영;하달규;신명철;김윤식
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.608-613
    • /
    • 1999
  • This thesis aims at developing of a digita governor system for the steam turbine generator on the Buk-Cheju Thermal Power Plant of KEPCO. The steam turbine generator of the Buk-Cheju Thermal Power Plant is modelled. As a hardware platform, a triple modular system which is fitted 32-bit microprocessor of Motorola company to perform the digital governor system is used. The parameters of the PID controller algorithm in the speed control block is tuned on the basis of the estimated model.

  • PDF

A study of turbine acceleration generated following to AVR fault of Wolsong #1 main generator. (주발전기용 자동 전압조정기의 고장에 따른 터빈 가속도 발생 사고 검토)

  • Chang, Tae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.74-77
    • /
    • 1992
  • During normal operation of 100% FP Reactor power(TBN/GEN output:690MWe), several times of acceleration phenomena has been generated on the turbine generator-of Wolsong #1 NPP. It was concluded that the acceleration occured following big sudden drop of the terminal voltage of main generator due to AVR potentiometer fault. The cause of turbine acceleration is reviewed with a several records and demonstrated by computer simulation, also presents a countermeasure of its trouble.

  • PDF

Power Generator Modeling and Simulation for LNGC (LNGC용 Power Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.297-299
    • /
    • 2016
  • In this paper, Power Generator modeling for LNG ship has been performed and monitoring system has been developed in MATLAB/SIMULINK. The principal component of Power Generator are engine part(Diesel Engine, Turbine Engine) which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Also, load sharing between paralleled generators has been performed to share a total load that exceeds the capacity of a single generator and designated ship lumped load simulations have been carried out. A validity of these systems has been verified by comparison between simulation results and estimated result from the designated lumped load.

  • PDF

Conceptual design of 10 MW class gearless type superconducting synchronous generator for wind turbine (10 MW급 gearless 타입 초전도 풍력발전기의 개념 설계)

  • Kim, Nam-Won;Kim, Gyeong-Hun;Kim, Kwang-Min;Kim, Seok-Ho;Park, Min-Won;Yu, In-Keun;Lee, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1294-1295
    • /
    • 2011
  • This paper describes a conceptual design of 10 MW class gearless type superconducting synchronous generator for wind turbine. The main benefits of gearless type generator are decrease of the process of maintenance and loss caused by drive-train. The designed generator improves efficiency of high-capacity wind turbine by applying superconducting coil making high magnetic field. Conventional wind turbines were investigated for up-scaling of generator and the generator had been designed with estimated design parameters using a finite elements method analysis tool.

  • PDF

Assessment of Insulation Condition in Gas Turbine Generator Stator Windings (가스터빈 발전기 고정자 권선의 절연상태 평가)

  • Kim, Hee-Dong;Yang, Gyu-Hyun;Ju, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1423-1428
    • /
    • 2010
  • The results of off-line and on-line diagnostic tests performed on the stator winding of an air-cooled gas turbine(G/T) generator are reported in this paper. Off-line diagnostic tests included measurements of the ac current, dissipation factor(tan${\delta}$), and partial discharge(PD). Six epoxy-mica capacitors were installed in the three phases of G/T generator for performing on-line diagnostic testing with the turbine generator analyzer(TGA). The TGA showed that the normalized quantity number(NQN) and the PD magnitude($Q_m$) were high in phase A of the stator winding. Internal discharges were generated in phases B and C, and slot discharge occurred in phase A. According to the trend analyses of the NQN and $Q_m$ values available for insulation condition assessment for G/T generator stator windings, it was concluded that phases B and C were in good condition, whereas phase A has been significantly deteriorated.

Design of 3MW Class Outer Rotor Type PMSG for Wind Turbine (풍력발전용 3MW급 외부회전자형 영구자석 동기발전기 설계)

  • Kim, Tae-Hun
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.41-49
    • /
    • 2010
  • Over the last decade, wind turbine industry has rapidly increased around world. These days many parts of the wind generators are induction generator. But it has some problems such as gearbox failure, rotor excitation and maintenance. Thus many manufacturers are considered permanent magnet synchronous generator named PMSG and direct drive. PMSG uses NdFeB magnet has many the advantage compare with induction generator. In this study, 3MW class outer rotor type PMSG for wind turbine is proposed. The generator features 2.6m stator outer radius, 1200mm stator length, 81 pole pairs, 14 rated rpm, 42kN/$m^2$ shear force density and 94.2% efficiency. Design and analysis generator using FEM program. Then calculate and derivate no load voltage, losses, conductor temperature. To reduce total harmonic distortion and cogging torque, the stator is applied the stator skewing. And to evaluate the designed generator, compare with other generators by active mass per rating torque and torque density.

Improved LVRT Capability and Power Smoothening of DFIG Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2011
  • This paper proposes an application of energy storage devices (ESD) for low-voltage ride-through (LVRT) capability enhancement and power smoothening of doubly-fed induction generator (DFIG) wind turbine systems. A grid-side converter (GSC) is used to maintain the DC-link voltage. Meanwhile, a machine-side converter (MSC) is used to control the active and reactive powers independently. For grid disturbances, the generator output power can be reduced by increasing the generator speed, resulting in an increased inertial energy of the rotational body. Design and control techniques for the energy storage devices are introduced, which consist of current and power control loops. Also, the output power fluctuation of the generator due to wind speed variations can be smoothened by controlling the ESD. The validity of the proposed method has been verified by PSCAD/EMTDC simulation results for a 2 MW DFIG wind turbine system and by experimental results for a small-scale wind turbine simulator.

A Study on Effect of Exciter Parameters for the Torsional Stress of Turbine-Generator (여자시스템의 파라미터가 터빈-발전기의 비틀림 스트레스에 미치는 영향 분석)

  • 김찬기
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.420-426
    • /
    • 2003
  • This paper deals with the effect of exciter parameters on the torsional stress of turbine-generator. The excitation system effects on the AC network stability and the turbine-generator stress. However. it, until now, have not reported that any parameter among exciter parameters is related to the stability and the stress. In order to verify those CIGRE HVDC model was used. Since the AC network with HVDC has the voltage stability problem due to big capacitor, the worst condition to analyze the stress can considered. The EMTDC program is used for the simulation studies.

Vibration Analysis of Steam Turbine-Generator Rotor System Using Component Mode Synthesis Method (구분모드합성법을 이용한 증기터빈$\cdot$발전기축계의 진동해석)

  • Yang, B.S.;Kim, Y.H.;Choi, B.G.;Lee, H.
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.401-408
    • /
    • 1999
  • A method is presented for the vibration analysis of steam turbine-generator rotor system based on the component mode synthesis method. The motion of each component of the system is described by superposing constraint mode associated with boundary coordinates and constrained normal modes associated with internal coordinates. This method using real fixed-interface modes allows for significant reduction in system model size while retaining the essential dynamic characteristics of the lower modes. The capability of this method is demonstrated in the natural frequency and unbalance response analysis of the steam turbine-generator rotor system in which the dynamics of the pedestal is considered. The results by the present method are compared with finite element method and trnasfer matrix method in terms of the accuracy and computing time.

  • PDF

A Technical Trends of Direct-Driven Permanent Magnet Generator for Wind Turbine (직접구동 영구자석 풍력발전기 기술동향)

  • Lee, Jung-Il;Kwon, Jung-Lock;Kim, Ki-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.97-100
    • /
    • 2003
  • Recently, the generators for wind turbine have been manufactured with high output power such like MW class machine in order to reduce the generation cost and to increase the energy efficiency. At the same time, direct-driven generators for wind turbine have been developed and researched, which have easy maintenance and high efficiency by simplification the system through the removal of the gear box. In this paper, at first, the advantage and disadvantage between the direct-driven generator system and conventional indirect-driven system are compared. And secondly, the permanent magnet generator (PMG) for wind turbine has been rapidly improved to cope with the recent trend which requires the high power output Per one machine and the convenience for maintenance, and the PMG is adequate for direct driven system and suitable for high-efficiency and light weight. So, the characteristics and technical trend of the PMG for wind turbine is examined. At last, a suitable technical trend for development of the permanent magnet generator for wind turbine is proposed.

  • PDF