• Title/Summary/Keyword: Turbine cascade

Search Result 145, Processing Time 0.021 seconds

Control of Power Quality Using a High Voltage STATCOM for the Integration of Large Scale Wind Power Plant (고전압 무효전력 보상기를 사용한 대규모 풍력발전 설비의 전력 품질 보상)

  • Kim, Jihong;Song, Seungho;Jeong, Seunggi
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.13-20
    • /
    • 2012
  • This paper describes a transformerless static synchronous campensator (STATCOM) system based on cascade H-bridge multilevel inverter with star configuration. It is designed not only for the dynamic and continuous compensation of the reactive power but also for the improvement of power quality of existing wind power plant. Especially, when the induction generator of wind turbine is directly connected to the grid, reactive power are occurred by exiting current. so a reactive power compensation system based on the cascade H-bridge multilevel STATCOM is proposed because the output power quality and controllability of reactive power are required by grid code in many different countries. Using various The proposed reactive power control strategy using a STATCOM is compared with the conventional scheme using fixed-size of capacitor bank through various simulation results.

Application of Navier-Stokes Equations to the Aerodynamic Design of Axial-Flow Turbine Blades (축류터빈 블레이드의 공력학적 설계를 위한 Navier-Stokes방정식의 적용)

  • Chung H.T;Chung K.S;Park J.Y;Baek J.H;Chang B.I;Cho S.Y
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2003
  • The design method for transonic turbine blades has been developed based on Wavier-Stokes equations. The present computing process is done on the four separate steps, i.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. In the present study, numerical simulation has been done to investigate the effects of the design parameters on the aerodynamic peformance of the axial-flow turbine blades. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to four parameters and compared with the experimental data.

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

Unsteady Performance Analysis of Accelerating Compressor Cascade (가속되는 압축기 익렬의 비정상 성능해석)

  • Kim M.-H.;Choi J.-Y.;Kim K. S.;Lee G. S.;Kim Y. I.;Lim J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.121-126
    • /
    • 2001
  • An accelerating flow field through a compressor cascade is studied numerically by unsteady computational simulation. The two-dimensional Navier-Stokes equations for compressible flow is used for the study of unsteady high incidence angle flow, with preconditioning scheme to cover the wide range of Mach number and $\kappa-\omega$ model for the turbulent viscous flow analysis. A DCA(double circular arc) compressor blade is accelerated artificially in this study to understand the unsteady effect by comparing the present results with the existing steady-state experimental and computational results. Also, the accelerating flow field during the starting phase of gas turbine is studied with actual experimental data for the understanding of flow field and performance characteristics at off-design condition.

  • PDF

Control Valve Positioner and Its effect on a Gas Turbine MW Control (공정제어루프 최종 조작부의 동작특성에 관한 연구)

  • Kim, Jong-An;Shin, Yoon-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.728-730
    • /
    • 1998
  • The control valve positioner is a high gain plain proportional controller which measures the valve stem position and compares it to its setpoint which is the primary controller output. The positioner in effect is the cascade slave of the primary controller. In order for a cascade slave to be effecttive, it must be fast enough compared to the speed of its set point change. This paper describes the positioner transfer function and its effect on the entire control loop characteristic based on the simulation results. The result showed that the control valve and positioner determined the gain and phase angle in the high frequency range, while the primary controller and process determined those of the low frequency range. We can also anticipate the combined characteristics in the whole frequency range when each element's frequency response is known.

  • PDF

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

Numerical Study of Film Cooling Characteristics in Turbine Blade Cavity (터빈 블레이드 캐버티 내 막냉각 특성에 관한 수치해석적 연구)

  • Kim, Kyung-Seok;Cho, Hyung-Hee;Kang, Shin-Hyoung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.648-651
    • /
    • 2008
  • Numerical calculations are performed to simulate the film cooling effect of turbine blade tip with squealer rim. Because of high temperature of inside rim, squealer rim is damaged easily. Therefore many various cooling systems were used. The calculations are based on 100,000 Reynolds number in linear cascade model. A blade has 2% tip clearance and 8.4% rim height. The axial chord length and turning angle is 237mm, 126$^{\circ}$. Numerical calculations are performed without and with film cooling. In a film cooling in the cavity, hot spots of cavity were cooled effectively. However hot spots of suction side rim still remains. The CFD results show that the circulation flow in cavity of squealer tip affects the temperature rise of squealer rim. To maintain the blade integrity and avoid the excessive hot spot of blade, rearrangement of cooling hole is needed.

  • PDF

A Study on the Nozzle-Rotor Interactions of Partial Admission Supersonic Turbines

  • Seong, Young-sik;Han, Seong-hoon;Kim, Kui-soon;Park, Chang-kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.391-397
    • /
    • 2004
  • The performance characteristics of partial admission supersonic turbines are analyzed by using the commercial CFD program FLUENT6.0. The governing equations were discretized with Euler implicit method in time and 2nd-order upwind scheme of FVM in space. The k-$\varepsilon$ turbulence model was utilized to describe the turbulent flow field. In order to investigate the nozzle--rotor interactions and the effect of partial admission, the flows in supersonic turbine rotor cascades with a nozzle are computed. Extensive computations of partial admission supersonic turbines provide the shock structures and flow patterns in the nozzle and rotor. It is clearly shown that the nozzle flow is highly affected by the shocks or expansion waves propagated from the rotor leading edge. And the rotor flow is also affected by the shocks or wakes originated from the nozzle.

  • PDF