• 제목/요약/키워드: Turbine Performance

검색결과 1,773건 처리시간 0.03초

GE 7F 가스터빈의 성능개선 결과 분석 (GE 7F Gas Turbine Performance Improvement Results and Analysis)

  • 정재모;심재용;박정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2111-2116
    • /
    • 2004
  • This paper shows how to improve the efficiency and output and to reduce NOx emission of Seoinchon GE 7F gas turbine, Korea Western Power Co. by replacing the existing 7F gas turbine with new 7FA+e gas turbine because the performance of 7F gas turbine was degraded due to long term operation. In this paper, we will study gas turbine development trend and O&M technology. Finally, we will review for uprate of Seoinchon 7F gas turbine to help someone to improve their units in the future.

  • PDF

Wind Turbine Simulators for Control Performance Test of DFIG

  • Abo-Khalil, Ahmed;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.192-194
    • /
    • 2007
  • This paper proposes a new wind turbine simulator using a squirrel cage induction for control performance test of DFIG (doubly-fed induction generator). The turbine static characteristics are modeled using the relation between the turbine torque versus the wind speed and the blade pitch angle. The turbine performance is subjected to a real wind speed pattern by modeling the wind speed as a sum of harmonics with a wide range of frequency. The turbine model includes the effect of the tower shadow and wind shear. A pitch angle controller is designed and used to protect the coupled generator by limiting the turbine speed to the maximum value. Experimental results are provided for a 3[kW] wind turbine simulator at laboratory.

  • PDF

마이크로 용적형 수차의 개발에 관한 연구 (A Study on the Development of a New Micro Positive Displacement Hydraulic Turbine)

  • 이영호;최영도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.284-290
    • /
    • 2006
  • For the case of high head and critical low flow rate range of micro hydropower resources, it requires very low specific speed turbines which are lower than conventional impulse turbine's specific speed. In order to satisfy the request for very low specific speed turbine with high efficiency, a new positive displacement turbine is developed. The performance characteristics of the new turbine is tested and compared with a conventional impulse turbine, which is used for automatic water faucet system. The purpose of present study is to develop an high performance turbine that can be used to extract micro hydropower potential of a water supply system. The test results show that the positive displacement turbine is much more efficient than the conventional turbine and it can sustain high efficiency under the wide range of operating conditions. The pressure pulsations at the inlet and outlet of the positive displacement turbine can be considerably minimized by using simple pressure damper.

화학공정 플랜트 해석용 소프트웨어를 이용한 복합화력 발전용 재열 사이클 가스터빈의 성능특성에 관한 연구 (Performance Analysis of a Reheat-cycle Gas Turbine for Combined Cycle Power Plants Using a Simulation Software for Chemical Process Plants)

  • 박민기;노승탁;손정락
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.472-479
    • /
    • 2006
  • Recently, various methods have been developed to improve the performance of gas turbines for combined cycle power plants. This paper especially focused on the gas turbine with a reheat process. The purpose of this study is to analyze performance characteristics of a reheat-cycle gas turbine on both a design point and off-design operations. Results of the parametric study of this model show how operating and design parameters influence on the performance of the gas turbine. Moreover, possibilities for the analysis of off-design performance based on a self-generated compressor performance characteristic map are presented.

터보펌프 터빈의 로터 팁 형상에 따른 성능변화 연구 (The Effect of Rotor Tip Geometry on the Performance of Turbopump Turbine)

  • 정은환;박편구;김진한
    • 항공우주기술
    • /
    • 제6권2호
    • /
    • pp.197-204
    • /
    • 2007
  • 터번로터 팁 형상의 변화에 따른 터보펌프 터빈의 성능변화에 대하여 실험적 연구를 수행하였다. 한국항공우주연구원에서 개발중인 30톤급 터보펌프용에 장착된 초음속 충동형 터빈을 기본 모델로 하여 터번로터 슈라우드 유무 및 팁간극 크기에 따른 터빈성능변화를 측정 비교하였으며, 이와 더불어 노즐-로터 오버랩에 따른 터빈성능 변화 연구도 함께 이루어졌다. 시험 수행 결과, 로터 슈라우드 유무에 따라 터빈성능의 절대량은 크게 변화하나 팁간극의 변화에 따른 터빈효율의 민감도는 초음속 충동형 터빈의 경우 고효율 아음속터빈에 비해 크게 작은 것으로 나타났다. 아울러, 최적 효율을 나타내는 노즐-로터 오버랩 값이 존재하는 것을 실험을 통해 확인하였다.

  • PDF

수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구 (A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis)

  • 김찬종;김재운;백인수;김철진
    • 산업기술연구
    • /
    • 제37권1호
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

석탄가스화 복합발전용 가스터빈의 성능 평가 (Performance Evaluation of the Gas Turbine for Integrated Ossification Combined Cycle)

  • 이찬;이진욱;윤용승
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.7-14
    • /
    • 1999
  • This simulation method is developed by using GateCycle code for the performance evaluation of the gas turbine in IGCC(Integrated Gasification Combined Cycle) power plant that uses clean coal gas fuel derived from coal gasification and gas clean-up processes and it is integrated with ASU(Air Separation Unit). In the present simulation method, thermodynamic calculation procedure is incorporated with compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. With the clean coal gases produced through commercially available chemical processes, their compatibility as IGCC gas turbine fuel is investigated in the aspects the overall performance of the gas turbine system. The predictions by the present method show that the reduction of the air extraction from gas turbine to ASU results in a remarkable increase in the efficiency and net power of gas turbines, but it is accompanied with a shift of compressor operation point toward to surge limit. In addition, the present analysis results reveal the influence of compressor performance characteristics of gas turbine have to be carefully examined in designing the ASU integration process and evaluating the overall performance parameters of the gas turbine in IGCC Power plant.

  • PDF

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제18권1호
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.