• Title/Summary/Keyword: Turbine Performance

Search Result 1,773, Processing Time 0.027 seconds

Numerical Study of the Supersonic Turbine Rotor Tip Variation Effect on the Turbine Performance (로터 팁 간극이 초음속 터빈 성능에 미치는 영향에 대한 전산해석 연구)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.382-386
    • /
    • 2006
  • Three dimensional numerical analysis of the supersonic turbines with different rotor tip clearances was conducted to analyze the effect of the tip gap clearance variations on the turbine performance. The result showed that the turbine performance deteriorates and the tip leakage increases by the effect of the rotor tip clearance and the tip leakage affects turbine performance degradation dominantly.

  • PDF

Influence of Side Leakage Loss on the Performance of a Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 측면누설손실이 성능에 미치는 영향)

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.291-295
    • /
    • 2006
  • Recently, greenhouse effect by $CO_2$ gas emitted by use of fossil fuel causes earth environmental problem. As a countermeasure of the global warming. micro hydropower under 100kW becomes the focus of attention for its clean and renewable energy sources. Newly developed micro positive displacement hydraulic turbine shows high efficiency and good applicability for the micro hydropoewer. The purpose of this study is to clarify the influence of leakage loss and effective head on the performance of the positive displacement hydraulic turbine for the further improvement of the turbine performance. The results show that the turbine. with a smaller side clearance. has much higher efficiency than that with bigger side clearance and it can sustain the high efficiency under the wider range of operation conditions. The turbine torque is proportional to the effective head and independent of the flow rate. The leakage is also dependent on the effective head but nearly independent of the flow rate.

Off-Design Performance Prediction of a Gas Turbine Engine (가스터빈 기관의 탈설계점 해석)

  • Kang, D.J.;Ryu, J.W.;Jung, P.S.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1851-1863
    • /
    • 1993
  • A procedure for the prediction of the off-design performance of a gas turbine engine is proposed. The system performance at off-design speed is predicted by coupling the thermodynamic models of a compressor and a turbine. The off-design performance of a compressor is obtained using the stage-stackimg method, while the Ainlay-Mathieson method is used for a turbine. The procedure is applied to a single-shaft gas turbine and its predictability is found satisfactory. The results also show that the net work output increases with the increase of the turbine inlet temperature, while the thermal efficiency is marginal. The maximum thermal efficiency at design point is obtained between the highest pressure ratio and design pressure ratio.

Hydrodynamic Performance Test of a Turbopump Assembly (터보펌프 조립체의 수력 성능 시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • Hydrodynamic performance test of a turbopump for a liquid rocket engine is carried out. The turbopump is composed of an oxidizer pump, a fuel pump and a turbine, and the two pumps are driven by the turbine. In the test, water is used for the pumps as working media and air is used for the turbine. Performance parameters of pumps and a turbine are drawn, and a power balance between the pumps and the turbine are calculated. The calculation shows a good power balance, which implies that the pump component tests, the turbine component test and the assembly test are reliably performed. At the starting period of the test, pressure rise-flow rate curve of a pump gradually approaches the ideal curve which could be obtained by very slow starting.

Performance Characteristics of a Partially Admitted Small Mixed-Type Turbine (부분분사에서 작동하는 소형 사류형 터빈에서의 성능특성에 관한 연구)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Paeng, Jin-Gi;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.889-898
    • /
    • 2009
  • A mixed-type turbine was adopted and the rotor outer diameter was 108 mm. Turbine rotors were designed to the axial-type blade because the turbine operated at a low partial admission rate of 1.7-2.0% with two stages. Performance characteristics were studied when the spouting from the nozzle was toward radially inward or outward direction. Additionally, the effect at each stage of the rotor was measured. For comparing with each turbine performance, properties were measured based on various rotational speeds. Measured net specific torque was used to compare with the turbine system performance. On the mixed-type turbine, better performance was obtained when the operating air spouted toward radially inward direction. The specific torque was increased by 7.8% from using the second stage although its effect depended on the rotational speed.

Development of a 50kW Micro Gas Turbine Engine (50kW 마이크로 가스터빈 개발)

  • Kim, Sooyong;Park, MooRyong;Choi, Bumseok;Ahn, Kookyoung;Choi, SangKyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.314-319
    • /
    • 2002
  • Performance analysis and test of a 50kW micro gas turbine is carried out. The present study was initiated in 1996 by KIMM researchers to develope a 50kW class turbogenerator gas turbine engine for hybrid vehicle propulsion system. but with its low emission and compactness, it seemed that it can also be applied as a source of distributed power generation. In this study, general description of the KIMM's efforts to acquire performance test skills of the self-made 50kW micro gas turbine engine. At present, non-load performance test up to 615000 rpm was accomplished and is expected to make through 80,000 rpm by the end of year. Several revisions in design and manufacture were made during the course of experiments. The resulting outputs is thought to be valuable for the further refinement of the system for eventual commercialization of the product.

  • PDF

Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel (Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석)

  • Lee, Jong-Jun;Cha, Kyu-Sang;Sohn, Jeong-Lak;Joo, Yong-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

Performance Analysis of HP Steam Turbines. of LNG Carriers (LNG 운반선용 증기터빈 고압단의 성능해석)

  • Park, Jong-Hwoo;Chung, Kyung-Nam;Kim, Yang-Ik;Cho, Seoung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.275-278
    • /
    • 2006
  • A steam turbine is one of propulsion systems of a LNG carrier, which consists of high pressure (HP) and low pressure (LP) turbines. In order to obtain high power, each one has the form of a multi-stage turbine. Especially, the first stage of a HP turbine is Curtis stage and uses partial admission considering the turbine efficiency. The performance of a HP turbine can be predicted by a mean-line analysis method, because the relatively large value of hub-tip ratio makes the three-dimensional losses small. In this study, a performance analysis method is developed for a multi-stage HP turbine using Chen's loss model developed for the transonic steam turbines. To consider the feature of partial admission, different partial admission models are reviewed, This analysis method can be used in partial load conditions as well as full load condition. The calculation results are also compared with the CFD results about some simple cases to check the accuracy of the program. Performance of two HP turbine models are calculated, and the calculation results are compared with the designed data. The comparison shows the qualitative performance analysis result.

  • PDF

Design of a Pump-Turbine Based on the 3D Inverse Design Method

  • Chen, Chengcheng;Zhu, Baoshan;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • The pump-turbine impeller is the key component of pumped storage power plant. Current design methods of pump-turbine impeller are private and protected from public viewing. Generally, the design proceeds in two steps: the initial hydraulic design and optimization design to achieve a balanced performance between pump mode and turbine mode. In this study, the 3D inverse design method is used for the initial hydraulic impeller design. However, due to the special demand of high performance in both pump and reverse mode, the design method is insufficient. This study is carried out by modifying the geometrical parameters of the blade which have great influence and need special consideration in obtaining the high performance on the both modes, such as blade shape type at low pressure side (inlet of pump mode, outlet of turbine mode) and the blade lean at blade high pressure side (outlet of pump mode, inlet of turbine mode). The influence of the geometrical parameters on the performance characteristic is evaluated by CFD analysis which presents the efficiency and internal flow results. After these investigations of the geometrical parameters, the criteria of designing pump-turbine impeller blade low and high sides shape is achieved.

Performance Monitoring and Load Analysis of Wind Turbine (풍력발전기의 성능 모니터링 및 하중분석)

  • Bae, Jae-Sung;Kim, Sung-One;Youn, Joung-Eun;Kyung, Nam-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF