• Title/Summary/Keyword: Turbine Engine

Search Result 631, Processing Time 0.024 seconds

Performance Analysis of an Aircraft Gas Turbine Engine using Particle Swarm Optimization

  • Choi, Jae Won;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.434-443
    • /
    • 2014
  • A turbo fan engine performance analysis and the optimization using particle swarm optimization(PSO) algorithm have been conducted to investigate the effects of major performance design parameters of an aircraft gas turbine engine. The FJ44-2C turbofan engine, which is widely used in the small business jet, CJ2 has been selected as the basic model. The design parameters consists of the bypass ratio, burner exit temperature, HP compressor ratio, fan inlet mass flow, and nozzle cooling air ratio. The sensitivity analysis of the parameters has been evaluated and the optimization of the parameters has been performed to achieve high net thrust or low specific fuel consumption.

A Basic Analysis of Performance of Turbo CI Engine based on Stirling Cycle (스털링 사이클을 기본으로 하는 과급 CI 엔진의 기초 성능 분석)

  • 배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.76-85
    • /
    • 2000
  • Stirling cycle was actualized as so called ‘hot air engine’. It has been focused again lately as one of measures for exhaust gas emission problem, but as small power engine because of its method of heat addition. Recently marine power plants commenced to meet a stringent environmental restrictions by international convention, Marpol so that diesel engines as main and auxiliarly power plants are urged to be reformed to reduce NOx emission. Author devised a compression ignition engine as a large marine power plants combined with turbo charger based on stirling cycle, and analyzed the performance by means of basic thermodynamic calculation. Analyzed in this paper, were theoretical efficiency, mean effective pressure, required equivalence ratio, gas turbine power ratio, maximum pressure, states of turbo-charger inlet gas and exhaust gas, manifesting that the engine could be proposed as one of the future power plants of marine use.

  • PDF

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, You-Il;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.629-634
    • /
    • 2011
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. The two possible mission profiles were established to decide the engine requirements and Design Point, and Design Point analysis was performed with the values of design parameter which were obtained from similar class engines and technical references. The results showed that Specific Net Thrust is 2599.4 ft/s and Specific Fuel Consumption is 1.483 lb/($lb^*h$) at the flight condition of Sea Level, Mach 1.2. It was also found through the performance analysis on the two possible mission profiles that major design parameters for determining Net Thrust were Turbine Inlet Temperature for low supersonic flight speed and Compressor Exit Temperature for high supersonic flight speed. In addition, simple turbojet engine with axial compressor, straight annular combustor, axial turbine and fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost light engine.

  • PDF

Effect of Propellant-Supply Pressure on Liquid Rocket Engine Performance (추진제 공급압력이 액체로켓엔진의 성능에 미치는 영향)

  • Cho, Won-Kook;Park, Soon-Young;Nam, Chang-Ho;Kim, Chul-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.443-448
    • /
    • 2010
  • In this paper, the changes in performance parameters, e.g., the combustor pressure, turbine power, engine mixture ratio, temperature of gas generator, and product gas, of a liquid rocket engine employing gas generator cycle with the variations in propellant-supply pressure have been described. Engine performance is numerically calculated using the 13 major system-level variables of the rocket engine. The combustor pressure and turbine power increase with an increase in the oxidizer-supply pressure and decrease with an increase in fuel-supply pressure. The lower mixture ratio of gas generator for increased fuel mass flow rate decreases the gas generator gas temperature and deteriorates the gas material properties as the turbine working fluid. The turbine power decreases with an increase in fuel-supply pressure; this results in a decrease in the main-combustor pressure, which is directly proportional to engine thrust.

Firing Test of Core Engine for Pre-cooled Turbojet Engine

  • Taguchi, Hideyuki;Sato, Tetsuya;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.115-121
    • /
    • 2008
  • A core engine for pre-cooled turbojet engines is designed and its component performances are examined both by CFD analyses and experiments. The engine is designed for a flight demonstration of precooled turbojet engine cycle. The engine uses gas hydrogen as fuel. The external boundary including measurement devices is set within $23cm{\times}23cm$ of rectangular cross section, in order to install the engine downstream of the air intake. The rotation speed is 80000 rpm at design point. Mixed flow compressor is selected to attain high pressure ratio and small diameter by single stage. Reverse type main combustor is selected to reduce the engine diameter and the rotating shaft length. The temperature at main combustor is determined by the temperature limit of non-cooled turbine. High loading turbine is designed to attain high pressure ratio by single stage. The firing test of the core engine is conducted using components of small pre-cooled turbojet engine. Gas hydrogen is injected into the main burner and hot gas is generated to drive the turbine. Air flow rate of the compressor can be modulated by a variable geometry exhaust nozzle, which is connected downstream of the core engine. As a result, 75% rotation speed is attained without hazardous vibration and heat damage. Aerodynamic performances of both compressor and turbine are obtained and evaluated independently.

  • PDF

Development of a Integrated Modifiable Micro Gas Turbine Engine Test Rig using LabVIEW (LabVIEW를 이용한 소형 가스터빈 엔진의 통합 시험장치 개발)

  • Kang, Young-Soo;Kim, Do-Hun;Lee, In-Chul;Yoon, Sang-Hoon;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.354-358
    • /
    • 2009
  • Micro gas turbine engine is well known as a power plant of unmanned aerial vehicle and a small scale emergency generation system and also, it is significant as initial research of large gas turbine and educational purpose of gas turbine. Many sort of Micro gas turbine test set for education is produced by several manufacturers, but all of the engine control system of them is separated with data acquisition system; moreover, the engine control algorithms are inaccessible and related variables could not be collected. In this investigation, the Integrated Modifiable Test Rig which has modifiable engine start-up, drive and situational control logics is developed by LabVIEW with I/O devices and it provides wide experimental applicability to studies of dynamic characteristics of fuel system and combustion instability.

  • PDF

A Parametric Analysis of Performance of Gas Turbine Combined, Split Cylinder, Constant Volume, Pressure, Temperature, Mixed Cycle Engine (가스터빈 결합, 분리실린더, 등적.등압.등온 혼합사이클 엔진성능의 변수 분석)

  • Kim Dong-Ho;Bae Jong-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1082-1091
    • /
    • 2004
  • Analyzed Parametrically was an internal combustion engine combined with gas turbine the cycle of which is splitted into compression side cylinder and expansion side one, and heat adding of which is during constant volume pressure, temperature process. The advantages of each measures were analyzed by means of thermal cycle diagram. The thermal efficiency of partial load cutting off firstly isothermal heat adding and secondly isobaric heat adding also was analyzed The authors suggested some potentials about the performance as for thermal efficiency, mean effective pressure and reducing emissions and noise supposed were the operating parameter of the engine set to some values and were some problems solved.

The Effects of Compressor Design Conditions on the Off-Design Performance of a Gas Turbine Engine (압축기 설계조건이 가스터빈 엔진의 탈설계점 성능에 미치는 영향)

  • 강동진;정평석;안상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2413-2422
    • /
    • 1994
  • The effects of compressor design conditions on the off-design performance of a single-shaft gas turbine engine have been studied. Three different geometric design conditions are considered and three different values for the specific mass flow rate at the inlet to the compressor are assumed. For each of nine compressor design, the off-design performance of the gas turbine engine is predicted using the method previously proposed by present authors. Results show that the predicted off-design performances are quite different from each other even though they have the same performance at design point: it means that compressor design conditions should be determined in consideration of the off-design performance of the engine. The specific mass flow rate at the inlet to the compressor is also shown that it might be optimized with respect to the net power of the engine.

TBCC Engine Performance Design Technique of Reusable Launch Vehicle (재사용 우주 발사체의 TBCC 엔진 성능 설계 기법)

  • Kim, Sung-Jin;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.167-170
    • /
    • 2008
  • A TBCC(Turbine Based Combined Cycle) engine performance design method for reusable launch vehicles flying both in subsonic and supersonic regime was proposed. The TBCC consists of turbo jet engines and ramjet engines, operating individually or together according to operation schedule. The performance scheme of turbojet and ramjet was validated and the combined engine performance of the TBCC at a typical flight condition was analyzed.

  • PDF

An Investigation of Flow Characteristics of Radial Gas Turbine for Turbocharger under Unsteady Flow (과급기용 Radial Turbine의 비정상 유동특성에 관한 연구)

  • Choi, J.S.;Koh, D.K.;Winterbone, D.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.42-48
    • /
    • 1994
  • Turbocharging is one of the best methods to improve the performance of diesel engines, because of its merits,-power ratio, fuel consumption and exhaust emissions. Most of them in small and medium diesel engines have adopted the pulse turbocharging method with twin entry vaneless radial turbines to maximize the energy utility of exhaust gas. This method requires the high performance of turbine under unsteady flow, and also the matching between turbine and diesel engine is most important. However, it is difficult to match properly between them. Because the steady flow data are usually used for it. Accordingly, it is necessary to catch the characteristics of turbine performance correctly over the wide range of the operation conditions under unsteady flow. In this paper, the characteristics of turbine performance under unsteady flow are represented at varying conditions, such as inlet pressure amplitude, turbine speed and frequence.

  • PDF