• 제목/요약/키워드: Turbine & Shaft

검색결과 259건 처리시간 0.024초

보조동력 개스터빈 로터-베어링 시스템에서 체결축의 로터다이나믹 영향 (Rotordynamic Influences of a Tie Shaft in a APU Gas Turbine Rotor-Bearng System)

  • 이안성;이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1051-1057
    • /
    • 2000
  • A projected 100 kW APU gas turbine rotor-bearing system has a main outer shaft, which is composed of some numbers of segmented sections for manufacturing and assembly conveniences. For a secure assembly of the segmented sections a tie shaft or inner shaft is installed inside of the outer shaft and a tensional axial preload of 50,000 N is provided to it. In this paper it is intended to set-up a sound modeling method of the APU rotor system, and particularly, the influences of the tie shaft on the rotordynamic characteristics of the entire APU gas turbine rotor-bearing system are investigated. Analysis results show that as a conservative design practice the inner tie shaft should be actively modeled in the rotordynamic analysis of the APU rotor-bearing system, and its effects on the dynamic behaviors of the outer shaft should be thoroughly design-reviewed.

  • PDF

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional Stress Prediction of Turbine Rotor Train Using Stress Model)

  • 이혁순;유성연
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional stress prediction of turbine rotor train using stress model)

  • 이혁순;유성연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF

발전설비의 터빈 축정력 (I) : 발전소 적용 사례 (Turbine Alignment (I) : Case Study in th Electronic Power Plant Application)

  • 황철호;김정태;전오성;이병준;이현
    • 소음진동
    • /
    • 제4권1호
    • /
    • pp.23-31
    • /
    • 1994
  • When a shaft is misaligned, a high level of vibration is experienced. As a consequence, the system performance could be low with high level of noise generated. Even, a catastrophic damage of the rotating machinery may happen in the worst situation. The vibration caused by the shaft misalignment is not cured unless a correct alignment of the shaft is investigated. In this paper, a step by step approach for the turbine alignment has been demonstrated. It includes measurement tips of the coupling rim and face, calculation procedure of the bearing level, and the relevant values of the addition and subtration for shims in order to align the shaft level correctly. Then, as an application of the shaft alignment, the turbine system at the Pyung Tek focile electric power plant has been examined. Since the real system consists of high pressure, low pressure turbines and the generator, detailed alignment prolcedures of the multi stage shaft system has been demonstrated.

  • PDF

가스 터빈 축 내부의 비정상 유동의 불안정성 (Transient Flow Instability inside a Gas Turbine Shaft)

  • 허남건;원찬식
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.103-107
    • /
    • 1999
  • Transient flow inside a hollow shaft of a Gas Turbine engine during sudden engine stop may result in non uniform heat transfer coefficients in the shaft due to flow instability similar to steady Taylor vortex, which may decrease the lifetime of the shaft. In the present study, transient Taylor vortex phenomena inside a suddenly stopped hollow shaft are studied analytically. Flow visualization is also performed to study the shape and onset time of Taylor Vortices for various initial rotational speed.

  • PDF

주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석 (Vibration Analysis of wind turbine gearbox with frequency response analysis)

  • 박현용;박정훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Studies on a Wind Turbine Generator System using a Shaft Generator System

  • Tatsuta Fujio;Tsuji Toshiyuki;Emi Nobuharu;Nishikata Shoji
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.177-184
    • /
    • 2006
  • In this paper a new dc-link type wind turbine generator system using a shaft generator system, which is widely used for power sources in a ship, is proposed. The basic configuration of the proposed wind turbine generating system is first explained. And the equations expressing the system are derived. Then the steady-state characteristics of the generating system are discussed. We use an experimental system that can simulate the characteristics of a wind turbine in this study, because it is hard to operate an actual wind turbine in a laboratory. In addition, the transient responses of this system are investigated when the velocity of the wind is changed. It is shown that experimental results were very close to the simulated ones, supporting the usefulness of the theory.

HVDC단에 연결된 터빈-발전기의 비틀림 스트레스 해석 (Torsional Stress Analysis of Turbine-Generator Connected to HVDC System)

  • 김찬기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.416-426
    • /
    • 2001
  • This paper deals with the impact of an inverter station on the torsional dynamics of turbine-generator which is located at the inverter side of a HVDC-AC network power system. The studies show that the torsional stress of turbine-generator depends on the AC network fault locations because of the commutation failures of inverter station. And the torsional stress induce fatigue in the shaft material and reduce the shaft life-time. So, the purpose of this paper is to analysis the torsional stress of turbine-generator shaft at inverter side, to find the checked points of turbine-generator. The EMTDC program is used for the simulation studies.

  • PDF

수력터빈의 압력변동에 의한 로터 진동 (Vibration of the Rotor due to Pressure Fluctuation in a Hydraulic Turbine)

  • 김기섭;김호종;박영하;이욱;전재영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1027-1033
    • /
    • 2000
  • This paper describes the characteristics of vibration of a hydraulic turbine mainly due to cavitation occurrence. The analysis of vibration spectra of the turbine shaft shows that hub vortex cavitation occurs in the downstream of the turbine runner, which is verified from coherence analysis between shaft vibration displacement and dynamic pressure at the draft tube. Even though acceleration level measured at the guide vane lever, which is usually used for evaluation of cavitations performance, is decreased during forced aeration, it is found from the analysis of dynamic pressure spectra that cavitation around runner blades still remains unchanged. It is also found that lateral vibration of the turbine shaft is mainly due to the hub vortex cavitation of the turbine runner.

  • PDF

모니터링을 이용한 중형 풍력발전기용 증속기 주축의 부하특성 분석 연구 (Study on the Load Properties of Main Shaft of Medium Size Wind-turbine Gearbox using Monitoring)

  • 박영준;이근호;이종원;남윤수;차종환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.378-382
    • /
    • 2007
  • To improve the reliability for a wind-turbine gearbox, the mechanical loads acting on the gearbox need to be monitored and analysed exactly. This study was conducted to identify the characteristics of torques and bending moments acting on the main shaft of the gearbox using the rainflow counting method and predict the fatigue life of the main shaft by using the modified Miner's rule. While the mean wind speed became 3.5 m/s, the life of the main shaft by the acting torques was predicted as 4.3${\times}10^6$ years, and it by the bending moments was as 2.3${\times}10^4$ years. If the life of the wind turbine was estimated as 20 years, the fatigue life of the main shaft was regarded as infinite. Also, it was suggested that the life of the main shaft must be predicted by not the torques but the bending moments.

  • PDF