• Title/Summary/Keyword: Turbine & Shaft

검색결과 259건 처리시간 0.025초

터빈 발전기 축 시스템의 다중 질량체 모델링을 통한 비틀림 응답 구현 (Realization of Torsional Response based on Multi-mass Modeling of Turbine-Generator Shaft System)

  • 박지경;조규정;손승현;정세진;김철환
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.201-207
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. If torsional shaft torque exceeds a certain threshold, the loss of fatigue life may occur and, in the end, it is possible to happen permanent shaft failure. Therefore, it is required to understand the torsional response for reliable operation and protection of turbine-generator shaft system. In this paper, we introduced multi-mass modeling method of turbine-generator shaft system using mechanical-electrical analogy and state-space equation to verify the transient torsional response based on ElectroMagnetic Transient Program (EMTP). These simple realization methods for turbine-generator shaft torsional response could be helpful to understand torsional interaction phenomena and develop the transient torque reduction countermeasures for turbine-generator shaft system.

고낙차 펌프-터빈에서의 축계 진동 특성 (Characteristics of the Shaft Vibration in a High Head Pump-Turbine)

  • 하현천;최성필
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.27-31
    • /
    • 1999
  • This paper describes the shaft vibration phenomena measured on a pump-turbine of a pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine is varied from 100 to 300 MW in the generating mode. The magnitude of the shaft vibration highly depends on the power load. The vibration magnitude of the shaft is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration is low. From nitration spectra, it is shown that the frequency of major nitration in that load zone is 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component does not occur below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, the shaft vibration is highly decreased due to an increased bearing preload.

  • PDF

고낙차 펌프-터빈에서의 축계 진동 특성 (Characteristics of the Shaft Vibration in a High Head Pump-Turbine)

  • 하현천;최성필
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.166-172
    • /
    • 1998
  • This paper describes the shaft vibration phenomena measured on a pump-turbine ofa pumped storage power plant. The pump-turbine runs at a rotational speed of 450 rpm (7.5 Hz). The power output (load) of the pump-turbine was varied from 100 to 300 MW in the generating mode. It was found that the magnitude of the shaft vibration was highly dependent upon the power load. The vibration magnitude of the shaft vibration is very high in the middle load zone from 170 to 210 MW, elsewhere the vibration low. From vibration spectra, it was found that the frequency of major vibration in that load zone was 2.5 Hz which is approximately $34\%$ of the shaft rotating speed in Hz. This frequency component disappeared below and above that load zone. This subsynchronous vibration is caused by the flow induced disturbance due to spiral vortex flow downstream of the pump-turbine runner. Furthermore, it was found that shaft vibration was highly decreased due to the increase of bearing preload.

  • PDF

Development of a Reclosing Scheme for Reduction of Turbine Generator Shaft Torsional Torques: A Decision Method to Achieve Optimal Reactor Capacity

  • Oh, Yun-Sik;Seo, Hun-Chul;Yang, Jeong-Jae;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1145-1153
    • /
    • 2014
  • It is well known that line switching operations like reclosing are able to cause transient power oscillations which can stress or damage turbine generators. This paper presents a reclosing scheme to reduce the shaft torsional torques of turbine generators by inserting an additional reactor. A novel method to determine optimal reactor capacity to minimize the torsional torque generated in a turbine generator is also proposed. In this paper, the turbine generator shaft is represented by a multi-mass model to measure torsional torques generated in the shaft between the turbine and the generator. Transmission systems based on actual data from Korea are modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. The simulation results clearly show the effectiveness of the proposed scheme and torsional torque can be minimized by applying the proposed scheme.

터빈 블레이드 모델링을 통한 터빈 발전기 축 시스템의 기계적 토크 응답 분석 (Analysis of Turbine-Generator Shaft System Mechanical Torque Response based on Turbine Blade Modeling)

  • 박지경;정세진;김철환
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1269-1275
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. There are various factors that affects torsional interaction such as fault, circuit breaker switching and generator mal-synchronizing, etc. Fortunately, we can easily simulate above torsional interaction phenomena by using ElectroMagnetic Transient Program (EMTP). However, conventional EMTP shows the incomplete response of super- synchronous torsional mode since it does not consider turbine blade section. Therefore, in this paper, we introduced mechanical-electrical analogy for detailed modeling of turbine-generator shaft system including low pressure turbine blade section. In addition, we derived the natural frequencies of modeled turbine-generator shaft system including turbine blade section and analyzed the characteristics of mechanical torque response at shaft coupling and turbine blade root area according to power system balanced/unbalanced faults.

Rotordynamic Characteristics of an APU Gas Turbine Rotor-Bearing System Having a Tie Shaft

  • Lee, An-Sung;Lee, Young-Seob
    • Journal of Mechanical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.152-159
    • /
    • 2001
  • In this paper it is intended to set-up a sound model of the 60,000rpm 100kW prototype APU gas turbine rotor-bearing system, and particularly to investigate the influences of the tie shaft on the rotordynamic characteristics of the entire APU gas turbine rotor-bearing system, employing the dual shaft model. Firstly, a mock-up APU rotor has been constructed to test and verify the model. Analytical natural frequency results have agreed with the corresponding modal test ones to within 5% difference. Then, the rotordynamic characteristics of the prototype APU rotorbearing system have been investigated. Natural vibration and unbalance response analyses results have shown that the inner tie shaft resonance can cause high enough vibration of the outer main rotor shaft. This could be a concern as the rotor journals operate on very thin air film at high speed. It is concluded as a conservative design practice that the inner tie shaft should be explicitly modeled in the rotordynamic analysis of the APU rotor-bearing system.

  • PDF

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.

수정된 재생사이클 가스터빈의 설계 및 부분부하 성능해석 (Analysis of Design and Part Load Performance of a Modified Regenerative Cycle Gas Turbine)

  • 황성훈;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.467-472
    • /
    • 2005
  • Characteristics of a Modified regenerative cycle gas turbine has been investigated. In the cycle, the turbine expansion is divided into two parts and the regenerator locates between them. Two types of mechanical design are assumed: two-shaft and single-shaft. In particular, optimal pressure ratio division between the high and low pressure turbines is evaluated for the single shaft configuration. The part load analyses have been carried out with the aid of off-design models. In addition to the general fuel only control, a variable speed control is assumed as the part load operating strategy of the single shaft configuration. Obvious advantage with the alternative cycle is observed in the variable speed operation of the single shaft design.

  • PDF

Case History for Reduction of Shaft Vibration in a Steam Turbine

  • Kim, In Chul;Kim, Seung Bong;Jung, Jae Won;Kim, Seung Min
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.315-321
    • /
    • 2001
  • The shaft system of turbine is composed of rotating shaft, blades, bearings which support the shaft, packing seal which prevent the leakage of steam, and couplings which connect the shaft. Shaft system component failure, incorrect assemblage or deflection by unexpected forces causes vibration problem. And every turbine has its own characteristics in dynamic response. In this paper we propose the three-bearing supported type rotor which is real equipment and being operated this time as commercial operation. From 1996 it has a high vibration problem and there are many kinds of trial to solve this problem. In resent outage we performed a special diagnosis and carried out appropriate work. We would like to introduce and explain about this case history.

  • PDF

300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구 (A Study of Bearing Oil Whip Treatment in 300MW Steam Turbine with Oil Temperature Change)

  • 황달연;김화영;문승재;이재헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.244-247
    • /
    • 2008
  • The phenomena of oil whip in steam turbine takes place for the un-balancing force between rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, It needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF