• Title/Summary/Keyword: Turbidity current

Search Result 95, Processing Time 0.027 seconds

Depositional Environment of the Cambrian Machari Formation in the Yeongweol Area, Gangweon Province, Korea

  • Chung, Gong-Soo;Lee, Eun-Kyung
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.72-86
    • /
    • 2002
  • The Middle to Late Cambrian Machari Formation in the Machari area, Yeongweol, Korea consists of 7 lithofacies and 3 facies associations, which are thought to be deposits of carbonate ramp (mid to outer ramp) to basin environment. These lithofacies are bedded lime mudstone, laminated lime mudstone, bioclastic/peloidal packstone to grainstone, poloidal/bioclastic wackestone, conglomerate, mottled lime mudstone, and shale. Bedded lime mudstone facies, a few cm thick lime mudstone alternating with shale layer, is believed to have been deposited by intermittent dilute turbidity currents. Laminated lime mudstone facies, alternating lime mudstone with laminated shale, is interpreted to have been formed by fine-grained turbidity currents. Bioclastic/peloidal packstone to grainstone facies was deposited by turbidity current and peloidal/bioclastic wackestone faceis was deposited by debris flow. Conglomerate facies is thought to be deposits of storm activities. Mottled lime mudstone facies is interpreted to have been formed by bioturbation. Shale facies is interpreted to have been formed by suspension settling. Seven lithofacies of the Machari Formation are divided into three facies associations. Facies association I consisted of bedded lime mudstone facies, mottled lime mudstone facies, conglomerate facies, and bioclastic/peloidal packstone to grainstone facies, is interpreted to have been deposited on the mid ramp. Facies assocaition II consisted of bedded lime mudstone facies, laminated lime mudstone facies, bioclastic/peloidal packstone to grainstone facies, and peloidal/bioclastic wackestone facies is thought to be deposits of the outer ramp. Facies association III consisted of laminated lime mudstone facies and shale facies is interpreted to have been formed on the basin environment.

Feasibility of a two step microfiltration and reverse osmosis membrane system for reuse of tunnel wastewater (터널폐수 재이용을 위한 통합형 멤브레인 시스템의 적용)

  • Lee, Jae-Hyun;Jeong, Se-Uk;Kim, Young Mo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.779-785
    • /
    • 2013
  • This study investigated the applicability of a two step microfiltration(MF) and reverse osmosis(RO) membrane system for reuse of tunnel wastewater. In this two step process, the MF system first treated only micropollutants in tunnel wastewater such as suspended solids(SS) and heavy metals, achieving less than 0.2 NTU turbidity, less than 1.1 mg/L chemical oxygen demand($COD_{Mn}$) and less than 0.8 mg/L total manganese(Mn). The RO system then removed over 95 % of the remaining pollutnats and particles, resulting in less than 0.02 NTU turbidity, less than 0.5 mg/L chemical oxygen demand($COD_{Mn}$), less than 0.04 mg/L total nitrogen(T-N) and less than 0.01 mg/L total phosphorus(T-P). In particular, addition of an RO system could lead to markedly reduced high salt concentrations in tunnel wastewater, approaching almost zero. Thus, reclaimed water using the combined membrane system could satisfy current South Korean regulations concerning wastewater reuse(turbidity ${\leq}2.0$ NTU; T-N ${\leq}10mg/L$; T-P ${\leq}0.5mg/L$; Salinity ${\leq}250mg{\cdot}Cl/L$).

Sludge Thickening using Electro-Flotation in Water Treatment Plant (전해부상에 의한 상수 슬러지 농축효율)

  • Lee, Jun;Han, Mooyoung;Dockko, Seok;Park, Yonghyo;Kim, Tschungil;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Gravity thickening process has been widely used in WTP sludge thickening at domestic water treatment plant. The operation method of the process is very simple, however, the process requires long detention time about 24~48 hours for sludge thickening, uses polymer, and low total solids of thickened sludge to increase sludge thickening efficiency. To solve there problems, we studied about flotation process, especially, electro-flotation (EF) process in WTP sludge thickening. Electro-flotation process is simpler than dissolved-air-flotation(DAF) process because EF needs only electrode and current to generate micro-bubbles and the operation is easy. This study was performed at two batch columns to compare interface height, total solids, effluent turbidity between an electro-flotation thickening and a gravity thickening. According to the result, an electro-flotation thickening was that interface height was decreasing, total solids had high concentration, and effluent turbidity was low in comparison with a gravity thickening. Also, it will make the high efficiency of following process, such as a dehydrating process and digestive process. because of high total solids and low moisture content in the sludge.

A study on the testing method of discolored tap water by spectrophotometer (분광측색계에 의한 착색 수돗물 시험방법 연구)

  • Dongheon Kim;Jonggeum Lee;Jiyoon Oh;Gitae Kim;Hangbae Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.187-202
    • /
    • 2023
  • This study focuses on the application of a new measurement method that quantifies the residual color of filtered water using a spectrocolorimeter after filtering the discolored substances. It was confirmed through the color and turbidity cross-test that the discolored substances cannot be measured effectively with the current legal color and turbidity test method. Therefore, the National Institute of Environmental Research's filter testing method, which involves filtering the sample through 0.45 ㎛ filter and visually inspecting the color, was improved. A membrane filter colorimetry (MFC) method was established by measuring the color difference (ΔE*ab(65)) of the filtered filter using a spectrophotometer and expressing it as filter color unit (FCU). Using the MFC method, the FCU for reference materials such as iron and manganese, as well as field samples, was measured. The results showed a high correlation with turbidity, and the color difference patterns varied depending on the type of reference materials and field samples. This indicates that the MFC method is an effective new measurement method of discolored tap water.

Comparison of operational efficiency between sand-filtration process and membrane filtration process (모래여과 공정과 막여과 공정의 운영효율 비교)

  • Byeon, Kwangjin;Jang, Eunsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.529-537
    • /
    • 2017
  • Membrane filtration process is an advanced water treatment technology that has excellently removes turbidity and microorganisms. However, it is known that it has problems such as low economic efficiency and the operating stability. Therefore, this study was to evaluate on the economical feasibility and operational stability comparison of membrane and sand filtration process in Im-sil drinking water treatment plant. For the economic analysis of each process, the electricity cost and chemical consumption were compared. In the case of electric power consumption, electricity cost is $68.67KRW/m^3$ for sand filtration and $79.98KRW/m^3$ for membrane filtration, respectively. Therefore, membrane filtration process was about 16% higher than sand filtration process of electricity cost. While, the coagulant usage in the membrane filtration process was 43% lower than the sand filtration process. Thus, comparing the operation costs of the two processes, there is no significant difference in the operating cost of the membrane filtration process and the sand filtration process as $85.94KRW/m^3$ and $79.71KRW/m^3$ respectively (the sum of electricity and chemical cost). As a result of operating the membrane filtration process for 3 years including the winter season and the high turbidity period, the filtrated water turbidity was stable to less than 0.025 NTU irrespective of changes in the turbidity of raw water. And the CIP(Clean In Place) cycle turned out to be more than 1 year. Based on the results of this study, the membrane filtration process showed high performance of water quality, and it was also determined to have the economics and operation stability.

Operation evaluation of DAF pilot plant for water treatment process in Hoedong Reservoir (회동수원지의 정수처리 공정을 위한 DAF pilot plant 운영 성능평가)

  • Maeng, Minsoo;Shahi, Nirmal Kumar;Kim, Donghyeun;Shin, Gwyam;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.463-471
    • /
    • 2020
  • A 1,000 ㎥/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 ㎛ showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.

Short-term Effects of Turbid Water and Flow Rate on the Benthic Diatom Community in an Artificial Channel (단기간 탁수와 유속 변동이 부착돌말류 성장에 미치는 영향)

  • Kim, Baik-Ho;Park, Hye-Jin;Min, Han-Na;Kong, Dong-Su;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.855-861
    • /
    • 2011
  • Short-term effects of current velocity and turbid water on the benthic diatom community and water quality were examined in artificial channel ($20{\times}200{\times}10cm$) with two different experiments. The first and second experiments were consisted of different current velocities such as 1 L/min., and 1, 3, and 6 L/min., respectively. The concentration of turbid water is prepared with loess and fixed at 10 and 20 times of the turbidity of control inflow (10 NTU, LTW), respectively. At experiment 1 (EXP-1), introduction of turbid water increased dissolved oxygen, electric conductivity, pH and turbidity, but there were no differences between low- (100 NTU, MTW) and high-turbid water (200 NTU, HTW). However, experiment 2 (EXP-2) did not change any environmental parameters except dissolved total and inorganic nitrogen like EXP-1. MTW in EXP-1 strongly stimulated the growth of benthic diatom, while both MTW (150 NTU) and HTW (300 NTU) in EXP-2 did not increase or decrease the diatom abundance. Over the study, the dominant species was four, Aulacoseira ambigua, Cyclotella stelligera, Aulacoseira granulata and Achnanthes minutissima. In EXP-1, two highest species in abundance, A. ambigua and A. granulata were highly grown in MTW, while Achnanthes minutissima high in HTW adversely. These results indicate that the introduction of turbid water can play an important role in the shift of water quality and benthic diatom community in stream ecosystem, especially inflow of soil water in low current velocity.

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.

Coagulation Control of High Turbid Water Samples Using a Streaming Current Control System (유동흐름 전류계를 이용한 정수장 고탁도 유입수 응집 제어 방법에 대한 연구)

  • Nam, Seung-Woo;Jo, Byung-Il;Kim, Won-Kyong;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.128-135
    • /
    • 2012
  • Objectives: This study was aimed at determining the optimum coagulation dosage in a high turbid kaolin water sample using streaming current detection (SCD) as an alternative to the jar test. Methods: SCD is able to optimize coagulant dosing by titration of negatively charged particles. Kaolin particles were used to mimic highly turbid water ranging from 50 to 600 NTU, and polyaluminum chloride (PAC, 17%) was applied as a titrant and coagulant. The coagulation consisted of rapid stirring (5 min at 140 rpm), reduced stirring (20 min at 70 rpm), and settling (60 min). To confirm the coagulation effect, a jar test was also compared with the SCD titration results. Results: SCD titration of kaolin water samples showed that the dose of PAC increased as the pH rose. However, supernatant turbidity less than 1 NTU after coagulation was not achieved for high turbid water by SCD titration. Instead, a conversion factor was used to calculate the optimum PAC dosage for high turbid water by correlating a jar test result with that from an SCD titration. Using this approach, we were able to successfully achieve less than 1 NTU in treated water. Conclusions: For high turbid water influent in a water treatment plant, particularly during summer, the application of SCD control by applying a conversion factor can be more useful than a jar test due to the rapid calculation of coagulation dosage. Also, the interpolation of converted PAC dose could successfully achieve turbidity in the treated water of less than 1 NTU. This result indicates that an SCD system can be effectively used in a water treatment plant even for high turbid water during the rainy season.

Characteristics of Proteins and Total Suspended Solids Removal by Counter Current Air Driven Type, High Speed Aeration Type and Venturi Type Foam Separator in Aquacultural Water (향류 공기 구동식, 고속 폭기식 및 벤튜리식 포말분리기에 의한 양어장수의 단백질 및 부유 고형물의 제거 특성)

  • SUH Kuen-Hack;KIM Byong-Jin;KIM Sung-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.205-212
    • /
    • 2000
  • Experimental investigations on the removal of protein, total suspended solids and turbidity from aquacultural water were carried out by using three types of foam separator: counter current air driven type foam separator (CCADFS), high speed aeration type foam separator (HSAFS) and venturi type foam separator (VFS). The decrease of flow rate by CCADFS, HSAFS and VFS were $0.4,\;66.1,\;77.2 {\%}$ respectively. Protein removal rates by three types foam separator were decreased with the increased hydraulic residence time (HRT). Bellw 0.32 minute and 0.21 minute of hydraulic residence times, protein removal rate of HSAFS and YES was higher than that of CCADFS, respectively. Protein removal rate of VFS was lower than that of HSAFS at any HRT. As increasing the HRT, protein removal efficiency of CCADFS was increased, but that of HSAFS and VES were decreased. The changes of removal rates and efficiencies of total suspended solid and turbidity were similar to proteins.

  • PDF