• Title/Summary/Keyword: Turbid Current

Search Result 27, Processing Time 0.024 seconds

Short-term Effects of Turbid Water and Flow Rate on the Benthic Diatom Community in an Artificial Channel (단기간 탁수와 유속 변동이 부착돌말류 성장에 미치는 영향)

  • Kim, Baik-Ho;Park, Hye-Jin;Min, Han-Na;Kong, Dong-Su;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.855-861
    • /
    • 2011
  • Short-term effects of current velocity and turbid water on the benthic diatom community and water quality were examined in artificial channel ($20{\times}200{\times}10cm$) with two different experiments. The first and second experiments were consisted of different current velocities such as 1 L/min., and 1, 3, and 6 L/min., respectively. The concentration of turbid water is prepared with loess and fixed at 10 and 20 times of the turbidity of control inflow (10 NTU, LTW), respectively. At experiment 1 (EXP-1), introduction of turbid water increased dissolved oxygen, electric conductivity, pH and turbidity, but there were no differences between low- (100 NTU, MTW) and high-turbid water (200 NTU, HTW). However, experiment 2 (EXP-2) did not change any environmental parameters except dissolved total and inorganic nitrogen like EXP-1. MTW in EXP-1 strongly stimulated the growth of benthic diatom, while both MTW (150 NTU) and HTW (300 NTU) in EXP-2 did not increase or decrease the diatom abundance. Over the study, the dominant species was four, Aulacoseira ambigua, Cyclotella stelligera, Aulacoseira granulata and Achnanthes minutissima. In EXP-1, two highest species in abundance, A. ambigua and A. granulata were highly grown in MTW, while Achnanthes minutissima high in HTW adversely. These results indicate that the introduction of turbid water can play an important role in the shift of water quality and benthic diatom community in stream ecosystem, especially inflow of soil water in low current velocity.

Simulation of Turbid Water According to Watershed Runoff and Withdrawal Type in a Constructing Reservoir (건설 예정인 댐에서 유역유출과 취수형태에 따른 탁수의 거동 예측)

  • Park, Jae-Chung;Choi, Jae-Hun;Song, Young-Il;Yu, Kyung-Mi;Kang, Bo-Seung;Song, Sang-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.3
    • /
    • pp.247-257
    • /
    • 2010
  • Watershed runoff and turbid water dynamics were simulated in the Youngju Dam, being constructed. The runoff flow and suspended solids were simulated and then thermal stratification and turbid water current in the reservoir were predicted by HSPF and CE-QUAL-W2 model, respectively. Considering selective withdrawal, we hypothesized 3 withdrawal types from the dam, i.e. surface layer, middle layer and the lowest layer. The maximum concentration of SS was 400mg/L in reservoir and it was decreased by the withdrawal. The inflowed turbid water fell to 30 NTU after 12 days regardless of the withdrawal types, but the surface layer withdrawal was a better type at turbid water discharge than the others. In current environmental impact assessment(EIA), we concluded that runoff and reservoir water quality predicted by HSPF and CE-QUAL-W2 was desirable, and appropriate parameters were selected by continous monitoring after EIA.

Coagulation Control of High Turbid Water Samples Using a Streaming Current Control System (유동흐름 전류계를 이용한 정수장 고탁도 유입수 응집 제어 방법에 대한 연구)

  • Nam, Seung-Woo;Jo, Byung-Il;Kim, Won-Kyong;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.128-135
    • /
    • 2012
  • Objectives: This study was aimed at determining the optimum coagulation dosage in a high turbid kaolin water sample using streaming current detection (SCD) as an alternative to the jar test. Methods: SCD is able to optimize coagulant dosing by titration of negatively charged particles. Kaolin particles were used to mimic highly turbid water ranging from 50 to 600 NTU, and polyaluminum chloride (PAC, 17%) was applied as a titrant and coagulant. The coagulation consisted of rapid stirring (5 min at 140 rpm), reduced stirring (20 min at 70 rpm), and settling (60 min). To confirm the coagulation effect, a jar test was also compared with the SCD titration results. Results: SCD titration of kaolin water samples showed that the dose of PAC increased as the pH rose. However, supernatant turbidity less than 1 NTU after coagulation was not achieved for high turbid water by SCD titration. Instead, a conversion factor was used to calculate the optimum PAC dosage for high turbid water by correlating a jar test result with that from an SCD titration. Using this approach, we were able to successfully achieve less than 1 NTU in treated water. Conclusions: For high turbid water influent in a water treatment plant, particularly during summer, the application of SCD control by applying a conversion factor can be more useful than a jar test due to the rapid calculation of coagulation dosage. Also, the interpolation of converted PAC dose could successfully achieve turbidity in the treated water of less than 1 NTU. This result indicates that an SCD system can be effectively used in a water treatment plant even for high turbid water during the rainy season.

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

Dynamics of High Turbid Water Caused by Heavy Rain of Monsoon and Typhoon in a Large Korean Reservoir (Andong Reservoir) (인공호에서 몬순과 태풍 강우에 의한 고탁수층의 이동과 소멸특성)

  • Park, Jung-Won;Shin, Jae-Ki;Lee, Hee-Moo;Park, Jae-Chung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.105-117
    • /
    • 2005
  • During the period of heavy rain from 2002 to 2004, the characteristics of the inflow, temporal and spatial fluctuations of high turbid water according to thermal stratification were studied on the Andong Reservoir which is the largest artificial lake in the Nakdong River basin, Korea. Thermal stratification was formed in June. Its structure determined to the pathway of inflowing turbid water and has affected by the transportation of high turbid water. Regardless of the time and amount of inflow, the high turbid water showed the shape of underflow at the riverine zone, separated from the bottom at the transition zone and moved to the lacustrine zone with the shape of density current. The plunging point depended on the time and amount of inflow. The distributions of thermal stratification and DO concentrations were changed by inflowing discharge. Two thermoclines and minimum DO layers were found out existing at metalimnion in a specific time, respectively. The layer of high turbid water which formed with the thickness of 20 m at the maximum below the depth of 15 m moved toward dam. Not settled to the bottom, the newly formed layer was discharged through the intake-outlet and dispersed into all layers by the circulation in the fall.

A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its Mitigation (소양강 탁수 현황과 저감에 대한 수리학적 분석)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.85-92
    • /
    • 2008
  • Water in Soyang River is an essential source for citizens of Chuncheon and Seoul areas. In 2006, turbid water in Soyang River aggravated by the typhoon Ewiniar, sustained for over 280 days unlike conventional years, then which interrupted water supply of Chuncheon and Seoul areas. Soil erosion derived from high cool lands constituting about 55% of Soyang River area is considered one of main causes for the turbid water, including imprudent development of mountainous area, road expansion, and road construction for forestry. According to analysis of turbidity, precipitation and reservoir level in Soyang River region for June 2006${\sim}$August 2008, the turbidity showed a peak correlation (r = 0.28) at a lag time of 49 days and especially did an excellent correlation (r = 0.60) with the reservoir level at a lag of 4 days. In the meantime, a critical turbidity of 31 NTU at Soyanggang Dam was estimated, over which would cause turbid water at Paldang Dam. In addition, a master recession curve was suggested, from which sustaining time of turbid water can be predicted.

Spatial and Temporal Dynamics of Turbid Water in Hypolimnetic Discharging Reservoir (심층 방류하는 안동호 내 탁수의 거동)

  • Park, Jae-Chung;Jung, Seok-Won;Park, Jung-Won;Kim, Ho-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The spatial and temporal variations of the high turbid water by a single event of heavy rain (total 299.1 mm and daily maximum 99.4 mm) were studied in Andong Reservoir, which has hypolimnetic discharges. Turbid water entered into the reservoir, was isolated from the bottom at the midreservoir and then passed through the metalimnion as an interflow current in the lacustrine zone. Maximum turbidity was 290 NTU at 16 m depth of the midreservoir, but the initial turbidity showed about 10 NTU in the reservoir before the rainfall. Turbid water in the reservoir affected to increase the withdrawal turbidity from the 3rd day after the rainfall, the maximum turbidity was 129 NTU at 5th day after the rainfall. Turbid water that flew towards the downreservoir distributed within 5 m above the outlet gate of the intake tower, showing the maximum turbidity, and that was decreased in its thickness and concentration by discharging through the intake tower. It has taken 38 days until the turbidity in the withdrawal reduced to 30 NTU, and 87 days to reduce the turbidity to the way when it was before the rainfall, with the correlation coefficient of 0.96 and 0.97, respectively. Turbid water was withdrawn from the reservoir by entraining into the intake tower as a form of the interflow, and not be settled down to the bottom of the reservoir. Therefore, we assessed that the depth of the withdrawal was appropriately positioned in Andong Reservoir, so as to withdraw the turbid water effectively from the reservoir.

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part I: Simulations of Hydro-thermal Dynamics, Dissolved Oxygen and Density Current

  • Bhattarai, Prasid Ram;Kim, Yoon-Hee;Heo, Woo-Myoung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.247-263
    • /
    • 2008
  • A two-dimensional (2D) reservoir hydrodynamics and water quality model, CE-QUAL-W2, is employed to simulate the hydrothermal behavior and density current regime in Andong Reservoir. Observed data used for model forcing and calibration includes: surface water level, water temperature, dissolved oxygen and suspended solids concentration. The model was calibrated to the year of 2003 and verified with continuous run from 2000 till 2004. Without major adjustments, the model accurately simulated surface water levels including the events of large storm. Deep-water reservoirs, like Andong Reservoir, located in the Asian Monsoon region begin to stratify in summer and overturn in fall. This mixing pattern as well as the descending thermocline, onset and duration of stratification and timing of turnover phenomenon were well reproduced by the Andong Model. The temperature field and distinct thermocline are simulated to within $2^{\circ}C$ of observed data. The model performed well in simulating not only the dissolved oxygen profiles but also the metalimnetic dissolved minima phenomenon, a common1y occurring phenomenon in deep reservoirs of temperate regions. The Root Mean Square Error (RMSE) values of model calibration for surface water elevation, temperature and dissolved oxygen were 0.0095 m, $1.82^{\circ}C$, and $1.13\;mg\;L^{-1}$, respectively. The turbid storm runoff, during the summer monsoon, formed an intermediate layer of about 15 m thickness, moved along the metalimnion until being finally discharged from the dam. This mode of transport of density current, a common characteristic of various other large reservoirs in the Asian summer monsoon region, was well tracked by the model.