• 제목/요약/키워드: Tunneling technique

검색결과 130건 처리시간 0.038초

LISP based IP Address Virtualization Technique for Resource Utilization on Virtualized SDN (가상화된 SDN에서 효과적인 자원 활용을 위한 LISP 기반 IP 주소 가상화 기법)

  • Go, Youngkeun;Yang, Gyeongsik;Yu, Bong-yeol;Yoo, Chuck
    • Journal of KIISE
    • /
    • 제43권12호
    • /
    • pp.1404-1411
    • /
    • 2016
  • Network virtualization is a technique that abstracts the physical network to provide multiple virtual networks to users. Virtualized network has the advantage to offer flexible services and improve resource utilization. In SDN architecture, network hypervisor serves to virtualize the network through address virtualization, topology virtualization and policy virtualization. Among them, address virtualization refers to the technique that provides an independent address space for each virtual network. Previous work divided the physical address space, and assigned an individual division to each virtual network. Each virtual address is then mapped one-to-one to a physical address. However, this approach requires a lot of flow entries, thus making it disadvantageous. Since SDN switches use TCAM (Ternary Contents Addressable Memory) for the flow table, it is very important to reduce the number of flow entries in the aspect of cost and scalability. In this paper, we propose a LISP based address virtualization, which separates address spaces for the physical and virtual addresses and transmits packet through tunneling, in order to resolve the limitation of the previous studies. By implementing a prototype, we show that the proposed scheme provides better scalability.

Prediction of Ground Condition and Evaluation of its Uncertainty by Simulated Annealing (모의 담금질 기법을 이용한 지반 조건 추정 및 불확실성 평가에 관한 연구)

  • Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • 제15권4호
    • /
    • pp.275-287
    • /
    • 2005
  • At the planning and design stages of a development of underground space or tunneling project, the information regarding ground conditions is very important to enhance economical efficiency and overall safety In general, the information can be expressed using RMR or Q-system and with the geophysical exploration image. RMR or Q-system can provide direct information of rock mass in a local scale for the design scheme. Oppositely, the image of geophysical exploration can provide an exthaustive but indirect information. These two types of the information have inherent uncertainties from various sources and are given in different scales and with their own physical meanings. Recently, RMR has been estimated in unsampled areas based on given data using geostatistical methods like Kriging and conditional simulation. In this study, simulated annealing(SA) is applied to overcome the shortcomings of Kriging methods or conditional simulations just using a primary variable. Using this technique, RMR and the image of geophysical exploration can be integrated to construct the spatial distribution of RM and to evaluate its uncertainty. The SA method was applied to solve an optimization problem with constraints. We have suggested the practical procedure of the SA technique for the uncertainty evaluation of RMR and also demonstrated this technique through an application, where it was used to identify the spatial distribution of RMR and quantify the uncertainty. For a geotechnical application, the objective functions of SA are defined using statistical models of RMR and the correlations between RMR and the reference image. The applicability and validity of this application are examined and then the result of uncertainty evaluation can be used to optimize the tunnel layout.

Microstructure and Characterization of Ni-C Films Fabricated by Dual-Source Deposition System

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • 제26권6호
    • /
    • pp.293-297
    • /
    • 2016
  • Ni-C composite films were prepared by co-deposition using a combined technique of plasma CVD and ion beam sputtering deposition. Depending on the deposition conditions, Ni-C thin films manifested three kinds of microstructure: (1) nanocrystallites of non-equilibrium carbide of nickel, (2) amorphous Ni-C film, and (3) granular Ni-C film. The electrical resistivity was also found to vary from about $10^2{\mu}{\Omega}cm$ for the carbide films to about $10^4{\mu}{\Omega}cm$ for the amorphous Ni-C films. The Ni-C films deposited at ambient temperatures showed very low TCR values compared with that of metallic nickel film, and all the films showed ohmic characterization, even those in the amorphous state with very high resistivity. The TCR value decreased slightly with increasing of the flow rate of $CH_4$. For the films deposited at $200^{\circ}C$, TCR decreased with increasing $CH_4$ flow rate; especially, it changed sign from positive to negative at a $CH_4$ flow rate of 0.35 sccm. By increasing the $CH_4$ flow rate, the amorphous component in the film increased; thus, the portion of $Ni_3C$ grains separated from each other became larger, and the contribution to electrical conductivity due to thermally activated tunneling became dominant. This also accounts for the sign change of TCR when the filme was deposited at higher flow rate of $CH_4$. The microstructures of the Ni-C films deposited in these ways range from amorphous Ni-C alloy to granular structures with $Ni_3C$ nanocrystallites. These films are characterized by high resistivity and low TCR values; the electrical properties can be adjusted over a wide range by controlling the microstructures and compositions of the films.

Characterization of the Vertical Position of the Trapped Charge in Charge-trap Flash Memory

  • Kim, Seunghyun;Kwon, Dae Woong;Lee, Sang-Ho;Park, Sang-Ku;Kim, Youngmin;Kim, Hyungmin;Kim, Young Goan;Cho, Seongjae;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.167-173
    • /
    • 2017
  • In this paper, the characterization of the vertical position of trapped charges in the charge-trap flash (CTF) memory is performed in the novel CTF memory cell with gate-all-around structure using technology computer-aided design (TCAD) simulation. In the CTF memories, injected charges are not stored in the conductive poly-crystalline silicon layer in the trapping layer such as silicon nitride. Thus, a reliable technique for exactly locating the trapped charges is required for making up an accurate macro-models for CTF memory cells. When a programming operation is performed initially, the injected charges are trapped near the interface between tunneling oxide and trapping nitride layers. However, as the program voltage gets higher and a larger threshold voltage shift is resulted, additional charges are trapped near the blocking oxide interface. Intrinsic properties of nitride including trap density and effective capture cross-sectional area substantially affect the position of charge centroid. By exactly locating the charge centroid from the charge distribution in programmed cells under various operation conditions, the relation between charge centroid and program operation condition is closely investigated.

Effects on the tissue reaction using compomer & Ketac Silver in the maxillary furcation in the beagle dogs (Compomer와 Ketac Silver로 성견 상악 이개부 병소 충전시 조직반응에 미치는 영향)

  • Ryu, Jea-Youn;Lim, Sung-Bin;Chung, Chin-Hyung;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.705-715
    • /
    • 2003
  • Procedures for treatment of molar furcation invasion defects range from open flap debridement, apically repositioned flap surgery, hemisection, tunneling or extraction, to regenerative therapies using bone grafting or guided tissue regenerative therapy, or a combination of both. Several clinical evaluations using regenerative techniques have reported the potential for osseous repair of treated furcation invasions. Regenerative treatment of maxillary molars are more difficult due to the multiple root anatomy and multiple furcation entrances therefore, purpose of this study was to evaluated histologically compomer and Ketac Silver as a barrier in the treatment of a bi-furcated maxillary premolar. Five adult beagle dogs were used in this experiment. With intrasulcular and crestal incision, mucoperiostcal flap was elevated. Following decortication with 1/2 high speed round bur, furcation defect was made on maxillary premolar. 2 month later one premolar was filled with compomer and the other premolar was filled with Ketac Silver. After 4, 8 weeks, the animals were sacrificed by vascular perfusion. Tissue block was excised including the tooth and prepared for light microscope with H-E staining. Results were as follows. 1. Compomer & Ketac Silver restoration were encapsulated fine connective tissue. 2. In 4 weeks, compomer & Ketac Silver restoration slightly infiltrated inflammatory cells but not disturb the new bone or new cementum formation. 3. In 8 weeks, compomer & Ketac Silver restoration were less infiltrated iflammatory cell and encapsulated fine connective tissue. 4. Therefore, compomer & Ketac Silver filling to the grade III maxillary furcations with multiple root anatomy and multiple furcation entrances is possible clinical method and this technique is useful method for maxillary furcation involvement but it is thought that periodic maintenance should be needed

Preliminary Study for Non-destructive Measurement of Stress Tensor on H-beam in Tunnel Support System using a Magnetic Anisotropy Sensor (자기 이방성 응력측정법을 활용한 터널 지보 구조물의 비파괴계측에 관한 기초적 연구)

  • Lee, Sang-Won;Akutagawa, Shinichi;Kim, Young-Su;Jin, Guang-Ri;Jeng, Ii-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.766-777
    • /
    • 2008
  • Currently in increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Successful design, construction and maintenance of NATM tunnel demands prediction, control and monitoring of ground displacement and support stress high accuracy. A magnetic anisotropy sensor is used for nondestructive measurement of stress on surfaces of a ferromagnetic material, such as steel. The sensor is built on the principle of the magneto-strictive effect in which changes in magnetic permeability due to deformation of a ferromagnetic material is measured in a nondestructive manner, which then can be translated into the absolute values of stresses existing on the surface of the material. This technique was applied to measure stresses of H-beams, used as tunnel support structures, to confirm expected measurement accuracy with reading error of about 10 to 20 MPa, which was confirmed by monitoring strains released during cutting tests The results show that this method could be one of the promising technologies for non-destructive stress measurement for safe construction and maintenance of underground rock structures encountered in civil and mining engineering.

  • PDF

Non-destructive Measurement of H-beam in Support System using a Magnetic Anisotropy Sensor (자기이방성 응력측정법을 이용한 강아치 지보구조물의 비파괴 계측)

  • Yoo, Ji-Hyeung;Moon, Hong-Deuk;Lee, Jae-Ho;Kim, Dae-Sung;Kim, Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1392-1397
    • /
    • 2010
  • Currently in increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method(NATM). Successful design, construction and maintenance of NATM tunnel demands prediction, control and monitoring of ground displacement and support stress high accuracy. A magnetic anisotropy sensor is used for non-destructive measurement of stress on surfaces of a ferromagnetic material, such as steel. The sensor is built on the principle of the magneto-strictive effect in which changes in magnetic permeability due to deformation of a ferromagnetic material is measured in a non-destructive manner, which then can be translated into the absolute values of stresses existing on the surface of the material. This technique was applied to measure stresses of H-beams, used as tunnel support structures, to confirm expected measurement accuracy with reading error of about 10 to 20MPa, which was confirmed by monitoring strains released during cutting tests The results show that this method could be one of the promising technologies for non-destructive stress measurement for safe construction and maintenance of underground rock structures encountered in civil and mining engineering.

  • PDF

A Study on the Tunnel Blasting Technique with a Combined Application of Electronic Detonators and Low Vibration Explosives in a Close Proximity to a Safety things (전자뇌관과 미진동폭약을 활용한 보안물건 초근접 구간에서의 터널발파공법 적용에 관한 연구)

  • Oh, Sei young;Lee, Chun sik;Lee, Ki keun;Lee, Dong hee;Lee, Seung jae;Park, Jong ho
    • Explosives and Blasting
    • /
    • 제35권4호
    • /
    • pp.36-47
    • /
    • 2017
  • Due to civil complaints on vibrations and noises arising from blasting, mechanical excavation has been widely used for tunneling rather than the method of blasting, especially in the case of being in a close-proximity of 10M-20M range to a safety-thing. However, mechanical excavation, though less, it does increase the cost of whole construction project as the period of excavation is much prolonged from lack of constructability. This study aims to research and develop an effective blasting method that can ensure the constructability of shortened excavation period whilst not compromising the safety of the safety-things in a proximity to the blasting site by using a combination of an electronic detonator that can accurately control its delay period and a Low Vibration Explosives(LoVEX) that is effective on vibration control.

Effects on the Tissue Reaction Using GI Cement in the Maxillary Grade II Furcation in the Beagle Dogs (성견 상악 치근 이개부 병소에 Glass Ionomer Cement 충전 시 조직 반응에 관한 연구)

  • Lee, Yong-Gon;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • 제30권4호
    • /
    • pp.793-803
    • /
    • 2000
  • Procedures for treatment of molar furcation invasion defects range from open flap debridement, apically repositioned flap surgery, hemisection, tunneling or extraction, to regenerative therapies using bone grafting or guided tissue regenerative therapy, or a combination of both. Several clinical evaluations using regenerative techniques have reported the potential for osseous repair of treated furcation invasions. Regenerative treatment of maxillary molars are more difficult due to the multiple root anatomy and multiple furcation entrances therefore, purpose of this study was to evaluated histologically self-curing glass-ionomer cement and light-curing glass-ionomer cement as a barrier in the treatment of a bi-furcated maxillary premolar. Five adult beagle dogs were used in this experiment. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree II furcation defect was made on maxillary third(P3), forth(P4) and fifth(P5) premolar. 2 month later experimental group were self-curing glassionomer cement and light-curing glassionomer cement. After 4, 8 weeks, the animals were sacrificed by vascular perfusion. Tissue block was excised including the tooth and prepared for light microscope with Gomori's trichrome staining. Results were as follows. 1. In all experiment group, there were not epithelial down growth and glass ionomer cement were encapsulated connective tissue. 2. In 4 weeks experiment I group slighly infiltrated inflammatory cells but not disturb the new bone or new cementum formation. 3. In 8 weeks, experiment groups I, II were encapsulated fine connective tissue. 4. Therefore glass-ionomer cement filling to the grade III maxillary furcations with multiple root anatomy and multiple furcation entrances were possible clinical methods and this technique is useful method for Maxillary furcation involvement.

  • PDF

Simulation of shield TBM tunneling in soft ground by laboratory model test (실내모형시험을 통한 연약지반의 쉴드 TBM 터널굴착 모사)

  • Han, Myeong-Sik;Kim, Young-Joon;Shin, Il-Jae;Lee, Yong-Joo;Shin, Yong-Suk;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제15권5호
    • /
    • pp.483-496
    • /
    • 2013
  • This paper presents the shield TBM technology in soft ground tunnelling. In order to perform this study, a scale model test was carried out using the developed small scaled shield TBM machine. The various instrumentations were conducted during the simulation of tunnelling. In addition, the ground behavior due to the shield TBM operation parameters was measured during the simulation. Based on the simulation results, the stability of the ground was evaluated and the fundamental shield TBM tunnelling technique in the soft ground was suggested. In conclusion, design's reliability through laboratory small scale model test about Shield-TBM section was obtained, and both the improvement plan for safety during construction and the construction plan for securing airport runway's safety during tunnel passing by Shield-TBM propulsion were suggested.