• Title/Summary/Keyword: Tunneling magnetoresistance (TMR)

Search Result 38, Processing Time 0.027 seconds

Effects of Rapid Thermal Anneal on the Magnetoresistive Properties of Magnetic Tunnel Junction

  • Lee, K.I.;Lee, J.H.;K. Rhie;J.G. Ha;K.H. Shin
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.126-128
    • /
    • 2001
  • The effect of rapid thermal anneal (RTA) has been investigated on the properties of an FeMn exchange-biased magnetic tunnel junction (MTJ) using magnetoresistance and I-V measurements and transmission electron microscopy (TEM). The tunneling magnetoresistance (TMR) in an as-grown MTJ is found to be ∼27%, while the TMR in MTJs annealed by RTA increases with annealing temperature up to 300$\^{C}$, reaching ∼46%. A TEM image reveals a structural change in the interface of A1$_2$O$_3$layer for the MTJ annealed by RTA at 300$\^{C}$. The oxide barrier parameters are found to vary abruptly with annealing time within a few ten seconds. Our results demonstrate that the present RTA enhances the magnetoresistive properties of MTJs.

  • PDF

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

Tunneling Magnetoresistance of a Ramp Edge Junction with $SrTiO_3$ Barrier Layer ($SrTiO_3$ 장벽층을 이용한 경사형 모서리 접합의 터널링 자기저항 특성연구)

  • Lee, Sang-Suk;Kim, Young-Il;Hwang, Do-Guwn;Kim, Sun-Wook;Kungwon Rhie;Rhee, Jang-Roh
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.174-175
    • /
    • 2002
  • A ramp-type tunneling magnetoresistance (TMR) junction having structure NiO(60 nm)/pinned Co(10 nm)MiO(60 nm)/barrier SrTiO$_3$(2-10 nm)/free NiFe(10 nm) with the 15 degree slope was investigated. We obtained nonlinear I(V) characteristics for ramp-type tunneling junctions that have distinctive difference with and without applied magnetic field. In the barrier SrTiO$_3$ thickness of 4 nm, the TMR was about 52% at a bias voltage of 50 mV. (omitted)

  • PDF

Tunneling magnetoresistance in ferromagnetic tunnel junctions with conditions of insulating barrier preparation (부도체층 제작조건에 따른 강자성 터널접합의 투과자기저항 특성 연구)

  • 백주열;현준원
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.61-66
    • /
    • 1999
  • The Spin-dependent tunneling magnetoresistance (TMR) effect was observed in $NiFe/Al_2O_3$/Co thin films. The samples were prepared by magnetron sputtering in a system with a base pressure of $3\times10^{-6}$Torr. the insulating $Al_2O_3$layer was prepared by r.f. plasma oxydation method of a metallic Al layer. The ferromagnetic and insulating layers were deposited through metallic masks to produce the cross pattern form. The junction has an active area of $0.3\times0.3\textrm{mm}^2$ and the $Al_2O_3$layer is deposited through a circular mask with a diameter of 1mm. It is very important that insulating layer is formed very thinly and uniformly in tunneling junction. The ferromagnetic layer was fabricated in optimum conditions and the surface of that was very flat, which was observed by AFM. Tunneling junction was confirmed through nonlinear I-V curve. $NiFe/Al_2O_3$/Co junction was observed for magnetization behavior and magnetoresistance property and magnetoresistance property is dependent on magnetization behavior and magnetoresistance property and magnetoresistance property is dependent on magnetization behavior of t재 ferromagnetic layer. The maximum magnetoresistance ratio was about 6.5%.

  • PDF

Study on annealing of $Cr/Co/Al-O_x/Co/Ni-Fe$ Magnetic Tunneling junctions

  • 이종윤;전동민;박진우;윤성용;백형기;서수정
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.72-73
    • /
    • 2002
  • MR(Magnetoresistance)현상이란 인가된 자장에 의해 저항이 변하는 현상이다. 이 현상은 여러 측면에서 연구되고 있고 그 중 TMR(Tunneling Magnetoresistance)현상은 sensor, head, memory device의 적용에 대한 연구가 진행 중에 있다. 특히 memory 소자 측면에서 MRAM은 현재 사용되고 있는 DRAM이나 SRAM들과는 달리 비휘발성과 기록밀도의 고집적 등 많은 장점을 갖는 소자로써 연구되고 있다. (중략)

  • PDF

AC Voltage and Frequency Dependence in Tunneling Magnetoresistance Device (터널링 자기저항 소자의 교류 전압 및 주파수 의존성 연구)

  • Bae, Seong-Cheol;Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.201-205
    • /
    • 2016
  • In this report, we measured the impedance spectrum in TMR device, and the relaxation behavior of the real and imaginary impedance spectrum was analyzed by using the equilibrant circuit of tunneling capacitance ($C_T$) and tunneling resistance ($R_T$). The relaxation frequency was increased with AC voltage in both the parallel and antiparallel alignment of two magnetic layers. The $R_T$ with AC voltage showed the typical bias voltage dependence. However, the $C_T$ showed large value than the expected geometrical capacitance. The huge increase of $C_T$ was affecting as a limiting factor for the high speed operation of TMR devices. Thus, the supercapacitance of $C_T$ should be considered to design the high speed TMR devices.

Effect of Plasma Oxidation lime on TMR Devices of CoFe/AlO/CoFe/NiFe Structure (절연막층의 플라즈마 산화시간에 따른 CoFe/AlO/CoFe/NiFe 구조의 터널자기저항 효과 연구)

  • 이영민;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • We investigated the evolution of magnetoresistance and magnetic property of tunneling magnetoresistive(TMR) device with microstructure and plasma oxidation time. TMR devices have potential applications for non volatile MRAM and high density HDD reading head. We prepared the tunnel magnetoresistance(TMR) devices of Ta($50{\AA}$)/NiFe($50{\AA}$)/IrMn($150{\AA}$)/CoFe($50{\AA}$)/Al($13{\AA}$)-O/CoFe($40{\AA}$)/FiFe($400{\AA}$)/Ta(($50{\AA}$) structure which have $100{\times}100\mu\textrm{m}^2$ junction area on $2.5{\times}2.5\textrm{cm}^2$ Si/$SiO_2$(($1000{\AA}$) substrates by an inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using an ICP plasma oxidation method by with various oxidation time from 30 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We found that the oxidized sample for oxidation time of 80 sec showed the highest MR radio of 30.31 %, while the calculated value regarding inhomogeneous current effect indicated 25.18 %. We used transmission electron microscope(TEM) to investigate microstructural evolution of insulating layer. Comparing the cross-sectional TEM images at oxidation time of 150 sec and 360 sec, we found that the thickness and thickness variation of 360 sec-oxidized insulating layer became 30% and 40% larger than those of 150 sec-oxidized layer, repectively. Therefore, our results imply that increase of thickness variation with oxidation time may be one of the major treasons of the MR decrease.

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

$NiFe/Co/Al_2O_3/Co/IrMn$ 접합의 터널링 자기저항효과

  • 홍성민;이한춘;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.291-295
    • /
    • 1999
  • $NiFe/Co/Al_2O_3/Co/IrMn$ tunneling junctions were grown on (100)Si wafer and their spin-valve tunneling magnetoresistance (TMR) was studied. The tunneling junctions were grown by using a 5-gun RF/DC magnetron sputter. $Al_2O_3$ barrier layer was formed by exposing Al layer to oxygen atmosphere at 6$0^{\circ}C$ for 72 hours. Strong exchange coupling interaction is observed between the ferromagnetic Co and the antiferromagnetic IrMn of Co/IrMn bilayer when IrMn is 100$\AA$ thick. $NiFe(183\;{\AA})/Co(17\;{\AA})/Al_2O_3(16\;{\AA})/Co(100\;{\AA})/IrMn(100\;{\AA})$ tunneling junction shows best TMR ratio of about 10% in the applied magnetic field range of $\pm$20 Oe. The TMR ratio is improved about 23% and electrical resistance is decreased about 34% when annealed at 200 $^{\circ}C$ for 1 hour in magnetic field of 330 Oe, parallel to the bottom electrode. With increasing the active area of junction the TMR ratio increases while electrical resistance decreases.

  • PDF

A Study on Temperature Dependence of Tunneling Magnetoresistance on Plasma Oxidation Time and Annealing Temperature (플라즈마 산화시간과 열처리 조건에 따른 터널링 자기저항비의 온도의존특성에 관한 연구)

  • Kim, Sung-Hoon;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.99-104
    • /
    • 2004
  • We have studied to understand the barrier and interface qualities and structural changes through measuring temperature dependent spin-polarization as functions of plasma oxidation time and annealing time. Magnetic tunnel junctions consisting of SiO2$_2$/Ta 5/CoFe 17/IrMn 7.5/CoFe 5/Al 1.6-Ox/CoFe 5/Ta 5 (numbers in nm) were deposited and annealed when necessary. A 30 s,40 s oxidized sample showed the lowest spin-polarization values. It is presumed that tunneling electrons were depolarized and scattered by residual paramagnetic Al due to under-oxidation. On the contrary, a 60s, 70 s oxidized sample might have experienced over-oxidation, where partially oxidized magnetic dead layer was formed on top of the bottom CoFe electrode. The magnetic dead layer is known to increase the probability of spin-flip scattering. Therefore it showed a higher temperature dependence than that of the optimum sample (50 s oxidation). temperature dependence of 450 K annealed samples was improved when the as-deposited one compared. But the sample underwent 475 K and 500 K annealing exhibits inferior temperature dependence of spin-polarization, indicating that the over-annealed sample became microstucturally degraded.