• 제목/요약/키워드: Tunnel-type structure

검색결과 157건 처리시간 0.024초

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

복개 구조물을 이용한 저토피 계곡부 터널의 통과방안에 대한 연구 (A study on the shallow tunneling method using cover structure)

  • 정용진;남현우;최호식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.564-569
    • /
    • 2005
  • Usually, Steel pipe grouting method or cut and cover method has been applied to tunnel with very shallow overburden or it is situated in valley. However, in case of lack of overburden height to reinforcement tunnel crown which is very difficult to construction. Also, application of cut and cover method that do not consider surrounding site condition causes popular enmity generation and environmental damage. It is the best alternative method that reduces the amount of excavated soil and excavate tunnel under ground to solve these problems. The tunneling method using cover structure which is to prevent a tunnel from collapse because this method can be reduce excavation area and construct tunnel under ground after set a cover structure and backfill ground. In this study, to know more effective structure type, comparative analysis was performed to behavior characters of slab and arch type construction that can be used to cover structure. Also a 2D and 3D numerical analysis have been performed to verify the stability of ground during excavation. As the result, the tunneling method using cover structure that it can be good alternative method for tunnel with shallow overburden and it through valley

  • PDF

2차원 및 3차원 모델링에 의한 터널구조물의 구조해석 (Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling)

  • 김래현;정재훈;임성순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

지반 그라우팅에 의한 상부구조물의 안전성 분석 (Stability Analysis of Upper Structures by Soil Grouting)

  • 황철성
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.58-65
    • /
    • 2013
  • Transportation and further expansion of social infrastructure was needed along the development of urbanization and population concentration. To use the underground space due to the lack of availability of land, it is inevitable to intersect between present structure and tunnel during construction. Soil grouting is one of the ground improvement methods to reinforce weak soil around the underground structures by injection of grouting liquid. Some of central columns of an upper structure are damaged during injection of grouting liquid by injection pressure. To investigate and improve the stability of the tunnel, three dimensional analysis are performed with full construction stages which includes the construction of present underpass, damaging columns of the underpass, reinforcing the columns by H-pile and shear walls, and excavation and construct tunnel. The arrangement of grouting holes such as curtain and horizontal type affects largely to the stability of upper structure and horizontal arrangement diminish the shear forces which is the cause of damage of central columns. The liquid injection type of reinforcement for tunnel is not recommended while the presence of upper structure with columns. Wall type reinforcing is utilize for permant support of upper structures which is affected by grouting injection pressure. H-pile is utilize for temporary support, but not for permanent since the sharing of shear forces is not much to shear wall during tunnel construction.

연속압출공법(ILM)을 이용한 수저(水底)터널공법에 관한 연구 (The Continuously Underwater Tunnelling Methods by Incremental launching Methods)

  • 정병률;류동훈;김준모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.28-41
    • /
    • 2009
  • We know the several construction methods for underwater tunnel, but properly submerged concrete box type tunnel was mostly good structure stability and mostly shot length of tunnels. Submerged box type tunnel was buildup the unit segments in dry dock or ship yard by 10 to 20meters. The submerged box was composed with segments was join each together. It was installing the gate and waterproofing the coupling the front hull of a box. The complete submerged box rise up to the surface water, tow in the submerged box by tugboat, going to the destination of tunnel construction site. Beforehand dredge up soil at the bottom of a underwater, sinking the submerged box, connection together complete submerged box in underwater. The research and development ILM tunneling method is receiving careful study. Biggest weakness in submerged concrete box type tunnel was pressure waterproofing, box to box connecting, complete submerged boxes navigation and installation, after operation the submerged tunnel and management concrete box structure. It was positive evidence in submerged concrete box type tunnel. We make a practical application of the principle "the ILM tunneling method in underwater construction methods."

  • PDF

지하철의 터널 배수체계에 따른 결함 사레 (Case Study on defects of Tunnel Drainage in Subway)

  • 김석조;이재욱;조성우;신용석
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.292-298
    • /
    • 2005
  • Tunnel in subway should be designed as a water-proof type tunnel as much as possible but it is difficult to make it come true due to several facts, such as construction technique and cost. A drainage type tunnel as a substitute of a water-proof tunnel lead to the increase of water pressure on the concrete lining that make bad effect to tunnel structure when it has some problem to operate the drainage system. Throughout studying about cases on defects of tunnel drainage in subway We hope it contributes to tunnel maintenance.

  • PDF

발전소 해양 배수 구조물의 적용사례 (A Case Research of Application of Submarine Structure for Discharge in the Power Plants)

  • 박시범;배동찬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1689-1692
    • /
    • 2008
  • In this research, these days extension of electric power station plant and new building plan is tending to more bigger size and much more cooling water for discharge, therefore submarine structure for discharge has needed various types and the large one. The domestic power plant was applied to once-through CW system structure that pipe line type, immersed PC-box culvert type and submarine headrace tunnel type of discharge structure. It is possible that the future structure type of submarine discharge is expected by a case research of application and plan.

  • PDF

Safety assessment of an underground tunnel subjected to missile impact using numerical simulations

  • Thai, Duc-Kien;Nguyen, Duy-Liem;Pham, Thanh-Tung;Pham, Thai-Hoan
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2021
  • This work presents a safety assessment of an underground tunnel subjected to a ballistic missile attack employing the numerical approach. For the impact simulation, a box shaped reinforced concrete (RC) structure with a cross section dimension of 8.0×10.0 m under a soil layer that was attacked by a SCUD missile was modeled using finite element (FE) software LS-DYNA. SCUD missile is one of a series of tactical ballistic missiles developed by Soviet Union during the Cold War, which is adopted for a short-range ballistic missile. The developed FE simulation for the penetration depth of the missile impacting into the soil structure was verified from the well-known formula of the penetration prediction. The soil-structure interaction, the soil type, and the impact missile velocity effects on the penetration depth of the missile into the different soil types were investigated. The safety assessment of the underground tunnel was performed with regard to the different depths of the underground tunnel. For each missile velocity and soil type, a specific depth called the unsafe depth was obtained from the analysis results. The structure beneath the soil beyond this depth remains safe. The unsafe depth was found to be increased with the increasing missile velocity.

복층터널 내부슬래브의 연결형식에 관한 수치해석적 연구 (Numerical study on the connection type of inner-slab in double deck tunnel)

  • 이호성;문현구
    • 한국터널지하공간학회 논문집
    • /
    • 제18권5호
    • /
    • pp.441-451
    • /
    • 2016
  • 본 연구에서는 쉴드 TBM에 의한 대심도 복층터널의 계획 시 세그먼트 라이닝의 거동을 주요 구조물인 내부 슬래브의 연결구조 형식에 따라 검토하였다. 복층터널의 내부슬래브와 세그먼트 라이닝 설계 요구조건을 정립하기 위하여 용도에 따라 내부 구조물의 형식을 정의하고, 터널 라이닝과 내부 슬래브의 연결구조를 비교하였다. 그리고 MIDAS Civil 2012 프로그램으로 빔-스프링 모델을 이용하여 수치해석을 수행하였다. 본 연구결과 중간슬래브 및 하부슬래브, 내부슬래브와 세그먼트 라이닝의 연결 형식 그리고 측압계수들은 복층터널 계획시 주요 설계사항임을 확인하였다.

국가별 풍하중 기준과 풍동실험에 따른 대공간 구조물 지붕의 풍압계수 분석 (Analysis of Wind Pressure Coefficient for Spatial Structure Roofs by Wind Load Standards and Wind Tunnel Tests)

  • 천동진;윤성원
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.103-113
    • /
    • 2017
  • Spatial Structure has suffered from a lot of damage due to the use of lightweight roofs. Among them, the damage caused by strong winds was the greatest, and the failure of the calculation of the wind load was the most frequent cause. It provides that wind tunnel test is used to calculate the wind load. However, it is often the case that the wind load is calculated based on the standard of wind load in the development design stage. Therefore based on this, the structure type and structural system and member design are often determined. Spatial structure is usually open at a certain area. The retractable roof structure should be operated with the open roof in some cases, so the wind load for the open shape should be considered, but it is not clear on the basis of the wind load standard. In this paper, the design wind pressure of a closed and retractable roof structure is calculated by KBC2016, AIJ2004, ASCE7-10, EN2005, and the applicability of wind pressure coefficient is compared with wind tunnel test.