• Title/Summary/Keyword: Tunnel support system

Search Result 187, Processing Time 0.023 seconds

Preliminary Study for Non-destructive Measurement of Stress Tensor on H-beam in Tunnel Support System using a Magnetic Anisotropy Sensor (자기 이방성 응력측정법을 활용한 터널 지보 구조물의 비파괴계측에 관한 기초적 연구)

  • Lee, Sang-Won;Akutagawa, Shinichi;Kim, Young-Su;Jin, Guang-Ri;Jeng, Ii-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.766-777
    • /
    • 2008
  • Currently in increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Successful design, construction and maintenance of NATM tunnel demands prediction, control and monitoring of ground displacement and support stress high accuracy. A magnetic anisotropy sensor is used for nondestructive measurement of stress on surfaces of a ferromagnetic material, such as steel. The sensor is built on the principle of the magneto-strictive effect in which changes in magnetic permeability due to deformation of a ferromagnetic material is measured in a nondestructive manner, which then can be translated into the absolute values of stresses existing on the surface of the material. This technique was applied to measure stresses of H-beams, used as tunnel support structures, to confirm expected measurement accuracy with reading error of about 10 to 20 MPa, which was confirmed by monitoring strains released during cutting tests The results show that this method could be one of the promising technologies for non-destructive stress measurement for safe construction and maintenance of underground rock structures encountered in civil and mining engineering.

  • PDF

An Experimental Study on the Behaviour of Tunnel Excavated in a Homogeneous Ground by Two-Stage Excavation (균질지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적 연구)

  • 김동갑;박승준;이상덕
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.345-352
    • /
    • 2004
  • In a shotcrete support system, the cooperation of the ground and the shotcrete lining makes it possible to transfer the shear stress to the shotcrete lining, which is dedicated to form a stable structure. In this study, a homogeneous model ground with constant strength was produced by using gypsum and the tunnel was excavated with a top heading method under the definite initial stress. During the excavation, the stress in the ground around the tunnel and the deformation of shotcrete lining were measured, The tensile stress was generated in tangential direction in the ground near the tunnel and in the shotcrete lining due to tunnel excavation. This shows the unified behavior of the ground and shotcrete lining, which is the most typical characteristic of the shotcrete support. As a result, the rates of in-situ stress during the excavation at a top boundary line was 9% and at top arch heading 15%. It was 48% right after excavating the heading and 94% before cutting the bench.

A Study on the Wind Tunnel Facility Performance Improvement of ADD Ludwieg Tube (국방과학연구소 Ludwieg Tube 풍동설비 성능개량 연구)

  • Sangjun Ma
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.118-125
    • /
    • 2023
  • The wind tunnel test is one of the essential processes in the development of guided missile systems, and various wind tunnel facilities exist depending on the test requirements, various conditions, and their purposes. The Ludwieg tube is very useful in the development of guided missile systems, and we have necessitated the upgrade of the Ludwieg tube in ADD to acquire various test requirements, such as high angle of attack, repeatability, and stability. In this paper, upgrading the nozzle, vacuum tank, and model support is suggested to improve the Ludwieg tube performance, and we demonstrate a result of the solution through pressure measurement.

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sup;Park, Tae-Soon;Lee, Jong-Sun;Lee, Jun-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

Performance analysis of tunnel scanning system based on Japanese performance evaluation system (일본 성능평가 제도기반 터널 스캐닝 시스템 성능 분석)

  • Chulhee Lee;Jaemo Kang;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.331-344
    • /
    • 2023
  • The performance of the existing tunnel scanning system was analyzed through the post-evaluation of NETIS (New Technology Information System) and Inspection Support Technology Performance Catalog. Suggestions for improvement and development direction of the tunnel scanning system were deduced. As new technology of Japan gave priority to providing user-centered information, it was possible to objectively compare and analyze the characteristics of various tunnel scan systems through post-evaluation of NETIS and standard test methods in the Inspection Support Technology Performance Catalog. Construction New Technology of Korea was centered on suppliers of technology certification, making it impossible to objectively compare the performance of tunnel scanning systems. The performance was compared and evaluated indirectly by comparing the specifications of the camera, which is a core device of Japan's tunnel scanning system. For the future development of tunnel scanning systems, high-resolution and fast exposure performance of cameras and corresponding high-intensity lighting devices are required. For this purpose, it is necessary to make an experimental environment in which the performance of the camera and lighting can be analyzed indoors.

The study on DC FRP support insulator wind tunnel test (직류용 FRP 지지애자 시작품 풍압시험에 대한 고찰)

  • Sim, Jae-Suk;Kin, Yoon-Sik;Jung, Ho-Sung;Cho, Ho-Ryung;Lee, Sang-Sik;Lee, Gi-Seung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.46-49
    • /
    • 2010
  • Fiber Reinforced Plastic (FRP) insulator has a higher performance than porcelain. It is only used in domestic AC 25 kV electric railway system. Seoul Metro has developed DC 1500 V FRP insulator since 2008. FRP support insulator of flexible property is affected by the wind in tunnel. A wind tunnel test was carried out to measure influence on the insulator housing when the train passed by. The test results showed that the wind which is resulted from the passing train had a little impact on the FRP insulator shed movements.

  • PDF

An Estimation on Application of Slope Stabilization Method Using PC Strand Cable (케이블을 이용한 사면안정 공법 적용성 평가)

  • Kim, Hong-Taek;Baek, Seung-Cheol;Yoo, Chan-Ho;Jang, Chung-Gil;Min, Kyung-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.984-991
    • /
    • 2008
  • In this study, to evaluate the slope and tunnel stabilization method using pc cable with bulbed. To estimate the application of tunnel support using field tests and numerical analysis results. The reinforcement effects of slope stabilization method reinforced by PC cables were estimated compared with conventional soil nail system that reinforce the slope using rebar.

  • PDF

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.

Rock-support Interaction behavior for Ground Condition Based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.155-161
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rook-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These cures are very useful to predict the required support pressure in the initial design stage.

  • PDF