• Title/Summary/Keyword: Tunnel support system

Search Result 190, Processing Time 0.023 seconds

Parenting experiences among fathers of prematurely-born children with cerebral palsy in South Korea

  • Park, Jisun;Bang, Kyung-Sook
    • Child Health Nursing Research
    • /
    • v.27 no.1
    • /
    • pp.75-85
    • /
    • 2021
  • Purpose: The symptoms and impairments caused by cerebral palsy usually require long-term treatment, resulting in a substantial burden on the family of affected children. This study explored the experiences of fathers with prematurely-born children with cerebral palsy, with a focus on how such experiences influenced their families. Methods: A qualitative case study method was used. Nine subjects were recruited from April 2018 to June 2019 at one hospital, and each was interviewed three times by a neonatal nurse. Results: Five core experiences of fathers were identified: "regret for an insufficient initial response", "confronting my child born as a premature baby", "the position of being a dad who can't do anything", "the process of treatment like a tunnel with no exit", and "a father's getting meaning in life through children". These stories covered an individual's timeline and family interactions. Conclusion: Our findings suggest that fathers of prematurely-born children tend to suppress their emotions; therefore, a novel intervention program to encourage fathers' emotional expression and to support healthier interactions with their families is needed. Moreover, our findings could contribute basic information for the construction of a community-based support system to aid families, including prematurely-born children and other persons with impairments.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

A study on rock mass classification in the design of tunnel using multivariate discriminant analysis (다변량 판별분석을 통한 터널 설계시의 암반분류 연구)

  • Lee, Song;Ahn, Tae Hun;You, Oh Shick
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.237-245
    • /
    • 2004
  • In designing a tunnel, RMR has been widely used to classify rock mass and to decide the support pattern according to the class of rock mass. However, this RMS system can't help relying on the empirical judgment of engineers who use variables which can be obtained only through consideration of the site conditions. In actuality, it is impossible to consider all the rating factors of RMS when using RMR system at the stage of designing. Therefore, in order to confirm possibility of RMR by use of only the quantitative factors for designing, this paper has done discriminant analysis. Rock strength or RQD has high coefficient of correlation with RMR value, and in consideration of the existing standards for rock mass classification, rock intensity and RQD are important factors for classification of rock mass. Through rock mass classification by the existing RMR system and rock mass classification by the discriminant analysis which has considered two variables only, the discriminant analysis using the rock intensity as an independent variable has shown 74.8% accuracy while the discriminant analysis using RQD as an independent variable has shown 74.3% accuracy. In case of the discriminant analysis which has considered both rock intensity and RQD, it has shown 82.5% accuracy. The existing cases have shown 40.3% accuracy at the stage of designing in which all the RMR factors are considered. It means that at the stage of designing, RMR system can work only with the rock intensity and RQD.

  • PDF

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

A Feasibility Study on the Han River Area as the Construction Site for the Kyung Bu Canal

  • Chung, Tae-Woong;Son, Bu-Soon;Kim, Ki-Hyun;Kim, Jong-Oh
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.120-127
    • /
    • 2000
  • To facilitate the carriage of goods and products, an improvement of the transportation system is greatly needed in Korea. The construction of the Kyung Bu canal that can traverse over the wide area of southern Korea os proposed to be one of the most favorable choices to resolve this need. To fulfill this plan, we investigated the possibility of connecting the Han River (in the midwest) with the Nak-tong River (in the southeast) via the Cho-ryeong tunnel (20.5 km long and 125 m high). According to topographic and geological mapping analysis, we are capable of selecting the optimal locations for the tunnels and locking systems. The water requirement for high locking systems can be satisfied by constructing additional dams above the Choong-ju area or by introducing water saving lock system. The results of our investigation support the idea such a canal system, if constructed, could lead to a revolution of the Korea's transportation system.

  • PDF

Suggestion of Regression Equations for Estimating RMR Factor Rating by Geological Condition (지질 조건을 고려한 RMR 인자값 추정을 위한 선형회귀식 제안)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Sung-Kwon;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.555-566
    • /
    • 2007
  • In general, RMR classification system is used for the support design of a tunnel. Face mapping during excavation and RMR-based rock classifications are conducted in order to provide information for complementary changes to preliminary survey plans and for continuous geological estimations in direction of tunnel route. Although they are ever so important, there are not enough time for survey in general and sometimes even face mapping is not available. Linear regression analysis for the estimation of mediating RQD and condition of discontinuities, which require longer time and more detailed observation in RMR, was performed and optimum regression equations are suggest as the result. The geological data collected from tunnels were analyzed in accordance with three rock types as sedimentary rock, phyllite and granite to see geological effects, generally not been considered in previous researches. Parameters for the regression analysis were set another RMR factor.

Tunnelling on terrace soil deposits: Characterization and experiences on the Bogota-Villavicencio road

  • Colmenares, Julio E.;Davila, Juan M.;Shin, Jong-Ho;Vega, Jairo
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.899-910
    • /
    • 2018
  • Terrace deposits are often encountered in portal areas and tunnels with low overburden. They are challenging to excavate considering their great mechanical and spatial heterogeneity and a very high stiffness contrast within the ground. Terrace deposits are difficult to characterize, considering that samples for laboratory testing are almost unfeasible to obtain, and laboratory tests may not be representative due to scale effects. This paper presents the approach taken for their characterization during the design stage and their posterior validation performed during construction. Lessons learned from several tunnels excavated on terrace deposits on the Bogota-Villavicencio road (central-east Colombia), suggest that based on numerical simulations, laboratory testing and tunnel system behaviour monitoring, an observational approach allows engineers to optimize the excavation and support methods for the encountered ground conditions, resulting in a more economic and safe construction.

Feasibility Study on the Utilization of Abandoned Underground Excavation Caverns (지하 채굴 폐공동의 활용 가능성 검토)

  • 임한욱;백환조;김치환
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2000
  • According to the industrial restructuring in the late 1980's, most domestic mines have been shutdown or suspended in operation. The closed underground excavation caverns remain in their abandoned conditions, and they will potentially cause environmental hazards. To evaluate the feasibility of the utilization of the abandoned caverns, the foreign crises were studied. As a result, we proposed several possible examples including underground storage cavern fur food products, underground compressed air energy system(CAES), and underground repository (or incineration plant) of industrial wastes. Among them, the underground waste repositories are most probable to be seen in Korea in the near future. For this, the study in rock engineering aspects should be conducted, which will include the establishment of support system and safety measure of the abandoned underground excavation caverns.

  • PDF

An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete (격자지보와 숏크리트 복합구조체의 특성 실험 연구)

  • Mun, Hong-Deuk;Baek, Yeong-Sik;Bae, Gyu-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.155-168
    • /
    • 1997
  • Lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is installed after tunnel excavation. Lattice girder has the following several advantages : 1. Lattice girder minimizes the amount of shotcrete shadow which happens to occur behind a steel support. 2. A triangular shape of lattice girder makes shotcrete placed efficiently. 3. Lattice girder provides a good bond strength for shotcrete, which makes the composite structure of lattice girder and shotcrete behave monolithic, and therefore, the rock load can be supported effectively by the lattice girder system, This paper presents the results from a model wall test, a strength test for shotcrete shot on the model wall and a strength test for the bond between lattice girder and shotcrete. These tests proved that lattice-girder system is superior to H-shaped steel-set system concerning the shotcrete rebound rate, the developed shotcrete strength and the adhesion characteristics.

  • PDF

A Study on Evaluation System of Track Support Stiffness for Concrete Tracks (콘크리트궤도의 궤도지지강성 평가시스템에 관한 연구)

  • Choi, Jung-Youl;Kim, Man-Hwa;Kim, Hyun-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • A conventional elastic material replacement and performance evaluation are very complicated and time-consuming, and it is difficult to know when to replace the elastic material in advance. By comparing with the product limit and the functional limit, the necessity of elastic material replacement and the improvement of track support stiffness according to replacement can be immediately demonstrated based on experimental data. Using an evaluation system of track support stiffness, the performance evaluation data for elastic materials obtained through field tests using software for track support stiffness is integrated and managed on the administrator's computer. Therefore, the replacement plan is established and maintenance history is managed by identifying the replacement time and location of elastic materials. It is possible to evaluate the performance and condition of the elastic material at the various points during the working time of the track inspection and the track performance (track support stiffness) and durability of the elastic material (aging level, spring stiffness variation rate, etc.) at the operation condition. The elastic material could be replaced timely, and the deterioration of the elastic material can be continuously monitored.