• Title/Summary/Keyword: Tunnel shaft

Search Result 103, Processing Time 0.02 seconds

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

Experimental investigation of the aeroelastic behavior of a complex prismatic element

  • Nguyen, Cung Huy;Freda, Andrea;Solari, Giovanni;Tubino, Federica
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.683-699
    • /
    • 2015
  • Lighting poles and antenna masts are typically high, slender and light structures. Moreover, they are often characterized by distributed eccentricities that make very complex their shape. Experience teaches that this structural type frequently suffers severe damage and even collapses due to wind actions. To understand and interpret the aerodynamic and aeroelastic behavior of lighting poles and antenna masts, this paper presents the results of static and aeroelastic wind tunnel tests carried out on a complex prismatic element representing a segment of the shaft of such structures. Static tests are aimed at determining the aerodynamic coefficients and the Strouhal number of the test element cross-section; the former are used to evaluate the critical conditions for galloping occurrence based on quasi-steady theory; the latter provides the critical conditions for vortex-induced vibrations. Aeroelastic tests are aimed at reproducing the real behavior of the test element and at verifying the validity and reliability of quasi-steady theory. The galloping hysteresis phenomenon is identified through aeroelastic experiments conducted on increasing and decreasing the mean wind velocity.

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

Experimental Study on the Effect of the Area Ratio between Shaft and Tunnel and Heat Release Rate on the Plug-holing Phenomena in Shallow Underground Tunnels (저심도 도로터널에서 터널과 수직환기구의 단면적 비와 열방출률이 Plug-holing 현상에 미치는 영향에 관한 실험연구)

  • Hong, Kibea;Na, Junyoung;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.619-625
    • /
    • 2019
  • It is difficult to design because of the plug-holing phenomenon in which the amount of smoke discharged from the vertical vent is smaller than the designed amount of smoke. In this study, the effect of cross-sectional area ratio of tunnel and natural ventilation and heat release rate of fire source on plug-holing phenomenon occurring in natural ventilation system was experimentally analyzed. In the experiment model reduced to 1/20 size, the aspect ratio of the tunnel and the vertical vent was fixed, and the influence on the plug-holing phenomenon was confirmed by varying the sectional area ratio of the tunnel and the vertical vent. Experimental results show that the plug-holing phenomenon is caused by the comparison of the smoke boundary layer temperature with the temperature in the vertical vents, and the flow and temperature distribution characteristics under the vertical vents are changed as the cross-sectional area ratio of the tunnel and vertical vents increases. The plug-holing phenomenon is affected by the cross-sectional area ratio between the tunnel and the vertical ventilation. The greater the cross-sectional area ratio, the greater the probability of plug-holing.

A study on hydraulic back analysis for an urban tunnel site and stability analysis based on hydro-mechanical coupling analysis (도심지 터널 용출수 발생구간에서의 수리 역해석 및 수리-역학 연계해석을 통한 안정성 해석 연구)

  • Park, Inn-Joon;Song, Myung-Gyu;Shin, Uyu-Soung;Park, Yong-Su
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.397-404
    • /
    • 2008
  • Excessive amount of groundwater flowed into tunnel, while constructing Incheon international airport railway. Tunnel passes under subway line no. 2 with only 1.76 m below. To protect the existing structure, TRcM excavation method was applied. As station and construction shaft are already constructed, which are located back and forth of TRcM section, 86.4 ton per day of groundwater inflow is against expectation. To identify mechanism of excessive water inflow, hydraulic back analyses were performed. Then, hydro-mechanical coupled analysis were also performed with the hydrogeologic parameters identified, whose results are investigated for checking the stability of adjacent structures to the tunnel under construction. And a number of mechanical analyses were also performed to check the hydro-mechanical coupling effect. The result from the mechanical analysis shows that subsidence and tunnel ceiling displacement will be 0.85 mm and 1.32 mm. The result of hydro-mechanical couple analysis shows that subsidence and maximum tunnel ceiling displacement will be 1.2 mm and 1.72 mm. Additional displacements caused by groundwater draw down were identified, however, displacement is minute.

  • PDF

A Numerical Study on the Effect of Pressure Relief Ducts on the Normal Pressure in a Preliminary Design of Honam-Jeju Subsea Tunnel (호남-제주 해저터널 가상설계의 공기압력 제어 덕트가 열차 주행에 미치는 영향에 대한 수치해석 연구)

  • Seo, Sangyeon;Ha, Heesang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.17-27
    • /
    • 2016
  • High-speed trains have been developed widely in European countries and Japan in order to transport large quantity of people and commodities in short time. Additionally, a high speed train is one of the most desirable and environmentally friendly transportation methods. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Due to this aerodynamic pressure against the train, a large amount of traction is required for the operation of a train in a tunnel. Therefore, it is essential to incorporate a pressure relief system in a tunnel in order to reduce aerodynamic resistance caused by a high-speed train. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate positive and negative normal pressures acting on a train. One-dimensional numerical simulations were carried out in order to estimate the effect of pressure relief systems.

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.

Experiment Correlation Analysis of Popeller Open-water Characteristics at Towing Tank and Caviaion Tunnel (예인수조와 캐비테이션 터널에서 프로펠러 단독특성의 실험적 상호관계 해석)

  • K.S. Kim;K.Y. Kim;J.W. Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.26-39
    • /
    • 2000
  • This paper presents the influence of Reynolds number on propeller open-water performance at the towing tank and the cavitation tunnel for series propellers(No. of blade=4, $0.3{\leq}A_E/A_O{\leq}0.75,\;0.5{\leq}P/D{\leq}1.1$). It is shown that the Reynolds number recommanded by 15th and 17th ITTC is not large enough to obtain reliable P.O.W. test results and then the suitable test conditions for the both facilities is suggested. The correlation of the propeller open-water characteristics at the cavitation tunnel and the towing tank is described and a correlation factor $\kappa$ is deduced from those test results. The viscous effect of the flow around the propeller shaft on the propeller characteristics is investigated from the velocity measurement by Laser Doppler Velocitimetry(L.D.V.). The measured velocity distribution shows that viscous flow effect is not negligible.

  • PDF

An experimental study for the effect of soil plug on the basal heave stability for the vertical shaft excavation in clay (점성토 지반 수직구 굴착 중 히빙 안정성 증가에 대한 관내토 효과에 대한 실험적 연구)

  • Kang, Seok-Jun;Cho, Gye-Chun;Kim, Jung-Tae;Cha, Yohan;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.183-195
    • /
    • 2018
  • Recently, the need for research on vertical shaft excavation is increasing with the increase of the demands for the underground and utility tunnels. As a part of the R&D project of the Ministry of Land, Infrastructure and Transport, CUT (center for utility tunnel) has developed "Ring cut method". "Ring cut method" is a method to improve the stability of the ground against the basal heave by excavator wall pre-penetration during vertical shaft excavation. In this study, the basal heave was simulated by centrifugal model test. The basal heave, ground subsidence, and ground deformation of surrounding ground were analyzed by soil plug effect from wall pre-penetration. It was found that the soil plug could control the basal heaving and ground subsidence, and verified that the 'Ring cut method' could be a good countermeasure for the ground stability against the basal heave.

Modeling of Smoke Dispersion through a Long Vertical Duct (장대 수직 환기구를 통한 매연 확산의 모델링 연구)

  • Yoon, Sung-Wook
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.287-293
    • /
    • 2003
  • A long vertical duct is an essential installation for extracting smoke to the ground level when a fire occurs in an underground space. Due to the limitations of its basic assumptions, the existing two-layer zone model is unsuitable to model smoke dispersion through a long vertical duct. Therefore, an assessment was made to investigate the applicability of the field model, which is based on the computational fluid dynamics (CFD). A similar configuration to the published experimental work was modeled to test the validity. It is clear that under a consistent decision criterion based on the mass fraction, the field model (CFD) is able to predict that the diffusion front progresses up the shaft with exactly the same rate as that in the empirical correlation equation. This result is for better than the mathematically obtained equations in previously published research. Therefore, it can be said that the field model is an excellent option to predict the smoke dispersion through the long vertical shaft.