• Title/Summary/Keyword: Tunnel safety

Search Result 1,125, Processing Time 0.03 seconds

A Study on Bending Behavior of Tunnel Support (터널지보의 굽힘거동에 관한 연구)

  • Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.896-902
    • /
    • 2007
  • The tunnel stability concerned with safety is very important in coal production process. The tunnel supports made by the GI beam has been used in domestic coal mine tunnels, and the GI beam was connected with another by the fish plate. It is necessary to analysis for the bending problems of the fish plate due to the rock pressure in some domestic mine tunnels. Therefore, this study proposes the application possibility of the optimization algorithms for the problem searching a load condition that bring about bending problem in tunnels. Consequently, in order to investigate the load conditions, desirability function as one of the optimization methods to study the bending behavior of tunnel supports was applied.

A study on the Reduction Scheme of Sediments Deposited on a Lateral Drain Pipe in Tunnel using Centrifugal Tests (원심모형실험을 이용한 터널 측방배수관에 퇴적되는 침전물 저감방안 연구)

  • Kim, Tae-Young;Kim, You-Seok;Park, Jong-Kwan
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1380-1384
    • /
    • 2006
  • Sediments deposited on lateral drain pipes in a tunnel make lateral porous pipes clogged. Since the safety of the tunnel can be affected by this phenomenon, it requires a regular maintenance of the lateral drain pipes. In this study, a series of centrifugal tests were conducted in order to find out the method which can reduce the clogging effect considerably. Four different types of tunnel drain configurations were selected in the experiments. By analysis of sediments for each configuration, the optimum drain configuration that can minimize sedimentation of cement constituents was investigated. As a results, the existing drain configuration which uses filter concrete appear to produce much sediments. In contrast, the new drain configuration appears to be able to reduce sedimentation ratio up to almost 50% comparing with the existing one. From these observations, it may be concluded that the new drain configuration, in which the lateral porous pipes of a tunnel are surrounded by gravel layer and non-woven geotextile, has high efficiency in maintenance.

  • PDF

A Case Study on Environmental Vibration Prediction : Ground Vibration Effect near from a Tunnel (환경지반진동의 예측사례 : 터널통과시 미치는 영향)

  • Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.45-50
    • /
    • 2007
  • When the walls and floor of a tunnel are excited by a train, a ground vibration energy is transmitted to the surface and to footing of a nearby buildings. Excessive vibration affected to a building structure causes undesirable effect to the structural safety and the perception on residents in building. In this paper, a simple approach is introduced to predict how much vibration, in terms of level and spectra, is transmitted through the ground from the tunnel vibration excitation. A high rise building on a tunnel is selected as an application example of this case study.

IFC-based Interperable information modeling of tunnel monitoring (상호운용성 확보를 위한 IFC 기반의 터널 계측 정보 모델링)

  • An, Hyun-Jung;Yi, Jin-Hoon;Kim, Hyo-Jin;Lee, Sang-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.613-616
    • /
    • 2008
  • This study presents an IFC-based information model for standardized and integrated information management system of tunnel monitoring. Information items of tunnel monitoring were extracted from the Tunnel Design Standard of Ministry of Construction and Transportation. Then, the information items were compared with components of IFC 2x Edition3 model. Two main entities are added into the IFC model for generic representing of monitoring devices and data. IfcMonitoringElement which is composed of IfcMonitoringLogger and IfcMonitorinSensor is proposed to represent physical information of data loggers and sensors, and relationship between data logger and sensors. Besides, as an additional resource of IFC model, IfcMonitoringData is provided to express measured data from sensors and warning histories.

  • PDF

A Study of Thermal and Air Distribution Forcast by Firing in the Longitudinal Tunnel (In Yimgo - 4th Tunnel) (종류식 터널내에서 화재에 의한 열 및 기류분포 예측에 관한 연구)

  • Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1209-1212
    • /
    • 2006
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted In the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

A Study on Fuzzy Logic Method for the Assessment of Tunnel Concrete Lining (터널 콘크리트 라이닝의 상태평가를 위한 퍼지추론기법 연구)

  • 이성원;조만섭;이광호;이석원;배규진;안영기
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.337-349
    • /
    • 1999
  • There are many difficulties to the engineers in the assessment of tunnel safety. Consequently, objective assessment of concrete lining is hard even by the experts of tunnel assessment. Of several difficulties in the assessment of tunnel safety, in this study, tunnel concrete lining was focussed iud evaluated quantitatively and objectively using the Fuzzy theory which it generally considered to be appropriate for the assessment, control and judgment. T-FLAS based on fuzzy theory was developed in this study for the quantitative and objective assessment of the concrete lining in tunnels. Based on the application of T-FLAS on the evaluated field data, it was shown that the assessment system using fuzzy theory(T-FLAS) can be the effective and objective method for the assessment of concrete lining.

  • PDF

The development of a back analysis program for subsea tunnel stability under operation: longitudinal direction (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 종단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.545-556
    • /
    • 2016
  • If a back analysis is used in various measurement information for the estimation of an operating subsea tunnel safety, it is possible to obtain the results within efficient error rate. With such a commercial geotechnical analysis program as FLAC3D, back analysis is performed with a DEA which was validated in previous studies. However, there is a problem that is relatively a time-consuming analysis. For this reason, beam-spring model-based FEM solver which takes shorter relative analysis time, was developed by Python language, and then combined with the built-DEA. In order to consider the assessment of safety of an operation tunnel near real-time, a program for longitudinal direction tunnel was developed due to its relative easy development for analysis solver engine.

A study on quantitative risk assessment for railway Tunnel fire (철도터널에서 차량화재시 정량적 위험도 평가에 관한 연구)

  • Yoo, Ji-Oh;Nam, Chang-Ho;Jo, Hyeong-Je;Kim, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2010
  • As we learned in Daegu subway fire accident, fire in the railway tunnel is prone to develop to large disaster due to the limitation of smoke control and smoke exhaust. In railway tunnel, in order to ensure fire safety, fire prevention and fighting systems are installed by quantitative risk assessment results. Therefore, in this research, developed the program to establish quantitative risk assessment and suggested quantitative safety assessment method including fire scenarios in railway tunnel, fire and evacuation analysis model, fatality estimate model and societal risk criteria. Moreover, this method applys to plan preventing disaster for Honam high speed railway tunnel. As results, we presented the proper distance of escape route and societal risk criteria.