• 제목/요약/키워드: Tunnel numerical analysis

검색결과 1,152건 처리시간 0.033초

스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석 (Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System)

  • 김정엽;김광용
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.

재래식 터널 변상 조사 사례 및 안전성 평가에 관한 연구 (A study on the evaluation of tunnel safety through a series of field inspection for ASSM tunnel)

  • 박시현;맹두영;이유석;김영호
    • 한국터널지하공간학회 논문집
    • /
    • 제6권2호
    • /
    • pp.151-160
    • /
    • 2004
  • 본 연구는 국내 재래식 철도 터널에서 발생한 아치부 종방향 균열 부위에 대하여 각종 현장조사를 실시하여 터널의 변상상태를 파악한 것이다. 현장 외관조사 및 각종 비파괴 조사를 통하여 균열 부위에 대한 상세한 조사를 실시하였으며 현장조사 결과를 토대로 균열의 발생 원인을 추정하였다. 아울러 현장여건을 고려한 안전성 해석을 실시하여 터널 구조물의 균열 발생 가능성을 검토하였다.

  • PDF

수치해석을 이용한 화재감지기 철도터널 화재 감지특성 연구 (Sensing Characteristics of Fire Detectors in Railway Tunnel by Using Numerical Analysis)

  • 박원희
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7964-7970
    • /
    • 2015
  • 터널과 같은 밀폐 공간에서는 화재시 발생하는 열과 연기로 인하여 터널내의 승객들에게 심각한 피해를 입힐 수가 있다. 이러한 피해를 최소화하기 위하여 터널의 화재를 조기감지하기 위하여 화재감지기가 터널에 설치된다. 철도터널의 화재감지기 성능시험 방법 정립을 위한 제한된 규모의 화원에서의 터널 상부 및 측벽에 설치된 화재감지기의 감지특성을 수치해석을 이용하여 분석하였다. 화재영향 수치해석을 위하여 NIST에서 개발한 FDS 프로그램을 사용하였으며, 터널벽의 온도를 현실적으로 계산하기 위하여 터널 외부의 구조를 가정하여 고려하였다. 화원크기에 따른 화재감지기별 화재감지 시간을 터널 위치별로 산출하여 비교 분석하였다.

터널 편압 대책에 대한 수치해석적 연구 (A Study of Numerical Analysis for Uneven Stress of Tunnel)

  • 현기환;윤지선
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.501-508
    • /
    • 2000
  • In recent years, as lines are selected In disadvantageous region, unavoidable developments is increased. Owing to such developments. environmental problems have been occurred frequently, In excavation of tunnels especially located in close to slope, uneven stress take place to tunnel due to a topographical factor. it is used assistant methods of construction which are excavation of slope, retaining wall, ground anchor, etc for uneven stress. these assistant methods raise problems of environmental. In this study, using slit, we could make better stress state by means of inducing stress concentration in boundary of tunnel. considering a variety of slit and rock mass condition, we use numerical analysis.

  • PDF

Numerical investigation of segmental tunnel linings-comparison between the hyperstatic reaction method and a 3D numerical model

  • Do, Ngoc Anh;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.293-299
    • /
    • 2018
  • This paper has the aim of estimating the applicability of a numerical approach to the Hyperstatic Reaction Method (HRM) for the analysis of segmental tunnel linings. For this purpose, a simplified three-dimensional (3D) numerical model, using the $FLAC^{3D}$ finite difference software, has been developed, which allows analysing in a rigorous way the effect of the lining segmentation on the overall behaviour of the lining. Comparisons between the results obtained with the HRM and those determined by means of the simplified 3D numerical model show that the proposed HRM method can be used to investigate the behaviour of a segmental tunnel lining.

각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가 (Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances)

  • 방승기;신진원
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

Precision of predicted 3D numerical solutions of vortex-induced oscillation for bridge girders with span-wise varying geometry

  • Harada, Takehiko;Yoshimura, Takeshi;Tanaka, Takahisa;Mizuta, Yoji;Hashiguchi, Takafumi;Sudo, Makoto;Miyazaki, Masao
    • Wind and Structures
    • /
    • 제7권1호
    • /
    • pp.13-28
    • /
    • 2004
  • A method of numerical analysis without conducting 3D wind tunnel model tests was examined in our previous study for predicting vortex-induced oscillation of bridge girders with span-wise varying geometry. The aerodynamic damping forces measured for plural wind tunnel 2D models were used in the analysis. A further study was conducted to examine the precision of solution obtained by this method. First, the responses of vortex-induced oscillation of two rocking models and a taut-strip bridge girder model with span-wise varying geometry were measured. Next, the responses of these models were numerically analyzed by means of this method, and then a comparison was made between the obtained $Vr-A-{\delta}_a$ contour diagram of each 3D model in the wind tunnel test and the diagram in the numerical analysis. Since close correlations were observed between each two $Vr-A-{\delta}_a$diagrams obtained in the model test and in the analysis in cases where the 3D model did not have strong three-dimensionality, our findings revealed that the predicted solution proved to be reasonably accurate.

The effect of radial cracks on tunnel stability

  • Zhou, Lei;Zhu, Zheming;Liu, Bang;Fan, Yong
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.721-728
    • /
    • 2018
  • The surrounding rock mass contains cracks and joints which are distributed randomly around tunnels, and in the process of tunnel blasting excavation, radial cracks could also be induced in the surrounding rock mass. In order to clearly understand the impact of radial cracks on tunnel stability, tunnel model tests and finite element numerical analysis were implemented in this paper. Two kinds of materials: cement mortar and sandstone, were used to make tunnel models, which were loaded vertically and confined horizontally. The tunnel failure pattern was simulated by using RFPA2D code, and the Tresca stresses and the stress intensity factors were calculated by using ABAQUS code, which were applied to the analysis of tunnel model test results. The numerical results generally agree with the model test results, and the mode II stress intensity factors calculated by ABAQUS code can well explain the model test results. It can be seen that for tunnels with a radial crack emanating from three points on tunnel edge, i.e., the middle point between tunnel spandrel and its top with a dip angle $45^{\circ}$, the tunnel foot with a dip angle $127^{\circ}$, and the tunnel spandrel with $135^{\circ}$ with tunnel wall, the tunnel model strength is about a half of the regular tunnel model strength, and the corresponding tunnel stability decreases largely.

지반응답곡선을 이용한 터널의 지반거동 분석 (Ground Response Curve for Ground Movement Analysis of Tunnel)

  • 이송;안성학;안태훈;공성석
    • 한국철도학회논문집
    • /
    • 제5권4호
    • /
    • pp.244-252
    • /
    • 2002
  • We must notice ground movement by excavation for reasonable tunnel designs. The convergence confinement method is an attempt to evaluate tunnel stability conditions by means of a mathematical model and a ground response curve. In this study, the convergence confinement method by numerical model was examined. This method don't need the basic assumptions for a mathematical model of circular tunnel shape, and hydrostatic in situ stress. Also modified ground response curve that is calculated after installing the support, is suggested, which informs us the ground movement mechanism. The ground response curve and the support reaction curve are mutually dependent. Especially the support reaction curve depends upon the ground response curve. The mechanism of tunnel must be analyzed by the interaction between support and ground. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

기존터널 안전진단 결과를 통한 근접시공 시 터널 안정성 평가 (Tunnel Safety Diagnosis in Near-excavation by In-depth Inspection of Tunnel)

  • 김석재;김민석;김준철;유영일;오정배;오세준
    • 터널과지하공간
    • /
    • 제16권4호
    • /
    • pp.347-356
    • /
    • 2006
  • 기존의 단선터널에 근접하여 신설터널의 시공시 기존터널의 안정성 확보를 최우선하기 위해 건전도 평가를 반영한 안정성 검토 수행 및 터널의 안전확보를 위해 검토 반영된 사례를 분석하였다. 건전도 평가결과 및 근접도 구분에 따른 신설터널에 대한 대책으로 선대구경수평심발과 Line Drilling을 병용하고 민가구간은 무진동암파쇄공법을 적용하여 진동과 소음을 허용치 이내로 제어하였다. 또한 신설터널 시공중에 발생할 수 있는 기존구조물에 대한 영향을 평가하여 열차의 운행과 사용중인 구조물의 안정성 확보를 위하여 Basset System을 계획하였다.