• Title/Summary/Keyword: Tunnel monitoring

Search Result 355, Processing Time 0.026 seconds

Leveraging Proxy Mobile IPv6 with SDN

  • Raza, Syed M.;Kim, Dongsoo S.;Shin, DongRyeol;Choo, Hyunseung
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.460-475
    • /
    • 2016
  • The existing Proxy Mobile IPv6 suffers from a long handover latency which in turn causes significant packet loss that is unacceptable for seamless realtime services such as multimedia streaming. This paper proposes an OpenFlow-enabled proxy mobile IPv6 (OF-PMIPv6) in which the control of access gateways is centralized at an OpenFlow controller of a foreign network. The proposed OF-PMIPv6 separates the control path from the data path by performing the mobility control at the controller, whereas the data path remains direct between a mobile access gateway and a local mobility anchor in an IP tunnel form. A group of simple OpenFlow-enabled access gateways performs link-layer control and monitoring activities to support a comprehensive mobility of mobile nodes, and communicates with the controller through the standard OpenFlow protocol. The controller performs network-layer mobility control on behalf of mobile access gateways and communicates with the local mobility anchor in the Proxy Mobile IPv6 domain. Benefiting from the centralized view and information, the controller caches the authentication and configuration information and reuses it to significantly reduce the handover latency. An analytical analysis of the proposed OF-PMIPv6 reactive and proactive handover schemes shows 43% and 121% reduction in the handover latency, respectively, for highly utilized network. The results gathered from the OF-PMIPv6 testbed suggest similar performance improvements.

Logistic Regression and GIS based Urban Ground Sink Susceptibility Assessment Considering Soil Particle Loss (토립자 유실을 고려한 로지스틱 회귀분석 및 GIS 기반 도시 지반함몰 취약성 평가)

  • Suh, Jangwon;Ryu, Dong-Woo;Yum, Byoung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.149-163
    • /
    • 2020
  • This paper presents a logistic regression and GIS based urban ground sink susceptibility assessment using underground facility information considering soil particle loss. In the underground environment, the particle loss due to water flow or groundwater level change leads to the occurrence and expansion of cavities, which directly affect the ground sink. Four different contributory factors were selected according to the two underground facility domains (water pipeline area, sewer pipeline area) and subway line area. The logistic regression method was used to analyze the correlation and to derive the regression equation between the ground sink inventory and the contributory factors. Based on these results, three ground sink susceptibility maps were generated. The results obtained from this study are expected to provide basic data on the area susceptible to ground sink and needed to safety monitoring.

Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG (온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Yoon, Sung-Wook;Matsuoka, Toshifumi
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.309-317
    • /
    • 2010
  • CCS (Carbon dioxide Capture and Storage) is a means of mitigating the contribution of $CO_2$ to the Greenhouse gas, from large point sources such as power plants and steel companies. CCS is a process whereby $CO_2$ is captured from gases produced by fossil fuel combustion, compressed, transported and injected into deep geologic formations for permanent storage. CCS applied to a conventional power plant can reduce $CO_2$ emissions to the atmosphere by approximately 80~90% compared to a plant without CCS. The IPCC estimates that the economic potential of CCS will be between 10% and 55% of the total carbon mitigation effort by year 2100. In this paper, overseas sites where CCS technology is being applied and technical development trends for CCS are briefly reviewed.

Case Analysis for Introduction of Machine Learning Technology to the Mining Industry (머신러닝 기술의 광업 분야 도입을 위한 활용사례 분석)

  • Lee, Chaeyoung;Kim, Sung-Min;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study investigated use cases of machine learning technology in domestic medical, manufacturing, finance, automobile, urban sectors and those in overseas mining industry. Through a literature survey, it was found that the machine learning technology has been widely utilized for developing medical image information system, real-time monitoring and fault diagnosis system, security level of information system, autonomous vehicle and integrated city management system. Until now, the use cases have not found in the domestic mining industry, however, several overseas projects have found that introduce the machine learning technology to the mining industry for improving the productivity and safety of mineral exploration or mine development. In the future, the introduction of the machine learning technology to the mining industry is expected to spread gradually.

Prototyping-based Design Process Integrated with Digital-Twin: A Fundamental Study (디지털 트윈 개념을 적용한 프로토타이핑 기반 디자인 프로세스: 기초연구)

  • Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In the general manufacturing sector, prototyping used to reduce the risks that can arise with new conceptual products. However, in AEC area, it does not mass-produce a building, so the prototype itself becomes a building. Therefore, it is challenging to have prototyping of the same scale as the real thing, and the prototyping process in architecture is very inefficient. The prototyping process in the design stage typically assumes making a scaled model, partial model, or digital model. However, it is difficult for these models to correspond to the actual building and the environment of time and space such as scale, material, environment, load, physical properties and deformation, corrosion, etc., unlike the actual building. When using the digital twin concept in the prototyping process, it is possible to measure performance from the design stage to the operation stage. The digital twin was found by a method for monitoring based on physical twins and real-time linkage in the operation stage. Therefore, if the digital twin concept is applied at the design stage, it is possible to predict performance using not only current performance but also history information using real-time information. In order to apply the digital twin concept to the prototyping design process, we analyze the theoretical considerations and the prototyping design process of the digital twin, analyze the cases and research results where the prototyping design was applied, Provide an applied prototyping design process. The proposed process is tested through a pilot project and analyzed for potential use.

Prediction of Blast Vibration in Quarry Using Machine Learning Models (머신러닝 모델을 이용한 석산 개발 발파진동 예측)

  • Jung, Dahee;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.508-519
    • /
    • 2021
  • In this study, a model was developed to predict the peak particle velocity (PPV) that affects people and the surrounding environment during blasting. Four machine learning models using the k-nearest neighbors (kNN), classification and regression tree (CART), support vector regression (SVR), and particle swarm optimization (PSO)-SVR algorithms were developed and compared with each other to predict the PPV. Mt. Yogmang located in Changwon-si, Gyeongsangnam-do was selected as a study area, and 1048 blasting data were acquired to train the machine learning models. The blasting data consisted of hole length, burden, spacing, maximum charge per delay, powder factor, number of holes, ratio of emulsion, monitoring distance and PPV. To evaluate the performance of the trained models, the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were used. The PSO-SVR model showed superior performance with MAE, MSE and RMSE of 0.0348, 0.0021 and 0.0458, respectively. Finally, a method was proposed to predict the degree of influence on the surrounding environment using the developed machine learning models.

Effects of Capillary Force on Salt Cementation Phenomenon (소금의 고결화 현상에서 모세관 효과)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • Salt cementation, a typical naturally-cemented phenomenon, may occur due to water evaporation under the change of climate. Capillary force may influence the distribution of cement in granular soils. This study addresses the effect of capillary force on salt cementation using five different techniques: cone penetration test, electrical conductivity measurement, photographic imaging technique, nondestructive imaging technique, and process monitoring by elastic wave. Glass beads modeling a particulate media was mixed with salt water and then dried in an oven to create the cementation condition. Experimental results show that salt cementation highly concentrates at the top of the small particle size specimens and at the middle or the bottom of the large particle specimens. The predicted capillary heights are similar to the locations of high salt concentration in the cemented specimens. Five suggested methods show that the behavior of salt-cemented granular media heavily depends on the capillary force.

Field investigation and numerical study of ground movement due to pipe pile wall installation in reclaimed land

  • Hu Lu;Rui-Wang Yu;Chao Shi;Wei-Wei Pei
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.397-408
    • /
    • 2023
  • Pipe pile walls are commonly used as retaining structures for excavation projects, particularly in densely populated coastal cities such as Hong Kong. Pipe pile walls are preferred in reclaimed land due to their cost-effectiveness and convenience for installation. However, the pre-bored piling techniques used to install pipe piles can cause significant ground disturbance, posing risks to nearby sensitive structures. This study reports a well-documented case history in a reclamation site, and it was found that pipe piling could induce ground settlement of up to 100 mm. Statutory design submissions in Hong Kong typically specify a ground settlement alarm level of 10 mm, which is significantly lower than the actual settlement observed in this study. In addition, lateral soil movement of approximately 70 mm was detected in the marine deposit. The lateral soil displacement in the marine deposit was found to be up to 3.4 and 3.1 times that of sand fill and CDG, respectively, mainly due to the relatively low stiffness of the marine deposit. Based on the monitoring data and site-investigation data, a 3D numerical analysis was established to back-analyze soil movements due to the installation of the pipe pile wall. The comparison between measured and computed results indicates that the equivalent ground loss ratio is 20%, 40%, and 20% for the fill, marine deposit and CDG, respectively. The maximum ground settlement increases with an increase in the ground loss ratio of the marine deposit, whereas the associated influence radius remains stationary at 1.2 times the pipe pile wall depth (H). The maximum ground settlement increases rapidly when the thickness of marine deposit is less than 0.32H, particularly for the ground loss ratio of larger than 40%. This study provides new insights into the pipe piling construction in reclamation sites.

Examining the Influence of TBM Chamber Condition and Transmission Distance on the Received Strength of Bluetooth Low Energy Signals: A Laboratory Simulation Experiment (TBM 챔버 상태와 전송 거리에 따른 저전력 블루투스 신호의 수신 강도 분석: 실험실 모사 실험)

  • Yosoon Choi;Hoyoung Jeong;Jeongju Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.425-434
    • /
    • 2023
  • To measure the wear amount of the TBM disk cutter in real time, it is important not only to automate the measurement using sensors, but also to stably transmit the measured data to the information processing system. In this study, we investigated the viability of utilizing Bluetooth Low Energy (BLE) technology to wirelessly transmit sensor data from the TBM cutter head to a receiver located at the chamber's rear. Through laboratory experiments, we analyzed the Received Signal Strength Index (RSSI) of the receiver considering various signal strength of the transmitter, separation distances between the transmitter and receiver and chamber fill materials. Our results demonstrate that wireless data transmission is feasible across all tested conditions when the transmitter signal strength is 0 dBm or higher.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.