• 제목/요약/키워드: Tunnel modelling

검색결과 169건 처리시간 0.03초

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

터널해석에 있어 지하수 거동의 중요성 (Significance of Ground Water Movements in the Numerical Modelling of Tunnelling)

  • 신종호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

TBM 굴진성능 예측을 위한 모델링 (Modelling for TBM Performance Prediction)

  • 이석원;최순욱
    • 터널과지하공간
    • /
    • 제13권6호
    • /
    • pp.413-420
    • /
    • 2003
  • 본 논문에서는 터널 및 지하공간의 기계화 시공에 있어서 굴진성능을 예측하는 모델링 기법을 고찰하였다. 첫 번째로 세계적으로 가장 잘 알려져 있는 두 가지 모델, 즉 이론적 접근을 기본으로 하고 있는 CSM 모델과 경험적 접근을 기본으로 하고 있는 NTH 모델의 비교를 수행하였다. 두 번째로는, 특별히 Constant Cross Section 커터를 사용하는 경우의 암석 굴삭 원리를 알아보고, 이 원리를 기본으로 하는 이론적 모델을 전개하여 암석특성과 커터 제원만으로 유도되는 절삭력을 구하는 관계식을 고찰하였다. 세 번째로는 기계화 시공에 있어서 굴진성능을 예측하기 위한 일반적인 모델링 기법을 제시하였다. 마지막으로 미국 Colorado School of Mines의 Earth Mechanics Institute(EMI)에서 개발한 CSM 컴퓨터 모델을 소개하고, 이 모델을 TBM 설계에 적용한 사례를 제시하였다.

서천터널 굴착 중 용출수 발생에 따른 터널 보수.보강 사례 (A case study of sudden groundwater inundation in Seocheon Tunnel)

  • 최혁;김선곤;김흥국;홍준표
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1340-1347
    • /
    • 2006
  • During excavation in seocheon tunnel, sudden groundwater inundation occurred in complex hydro-geological environments prevailing in underground tunnel. Large volumes of groundwater flowed into tunnel at STA 54km600. The authors have provided a comprehensive background to hydro-mechanics of groundwater with a geological analysis, ground investigation, hydro- mechanical modelling etc. To reinforce tunnel, we have applied the TAS grouting and the steel multi-layer grouting, and comfirmed the effects of reinforcement.

  • PDF

Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips

  • Jeon, Young-Jin;Jeon, Seung-Chan;Jeon, Sang-Joon;Lee, Cheol-Ju
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.187-200
    • /
    • 2020
  • In the current work, a series of three-dimensional finite element analyses have been conducted to investigate the behaviour of pre-existing single piles in response to adjacent tunnelling by considering the tunnel face pressures and the relative locations of the pile tips with respect to the tunnel. Via numerical modelling, the effect of the face pressures on the pile behaviour has been analysed. In addition, the analyses have concentrated on the ground settlements, the pile head settlements and the shear stress transfer mechanism at the pile-soil interface. The settlements of the pile directly above the tunnel crown (with a vertical distance between the pile tip and the tunnel crown of 0.25D, where D is the tunnel diameter) with a face pressure of 50% of the in situ horizontal soil stress at the tunnel springline decreased by approximately 38% compared to the corresponding pile settlements with the minimum face pressure, namely, 25% of the in situ horizontal soil stress at the tunnel springline. Furthermore, the smaller the face pressure is, the larger the tunnelling-induced ground movements, the axial pile forces and the interface shear stresses. The ground settlements and the pile settlements were heavily affected by the face pressures and the positions of the pile tip with respect to the tunnel. When the piles were inside the tunnel influence zone, tensile forces were induced on piles, while compressive pile forces were expected to develop for piles that are outside the influence zone and on the boundary. In addition, the computed results have been compared with relevant previous studies that were reported in the literature. The behaviour of the piles that is triggered by adjacent tunnelling has been extensively examined and analysed by considering the several key features in substantial detail.

단층파쇄대를 포함한 화강암지역의 여수로 터널 안정성 분석 (Stability Analysis of the Spillway Tunnel Located on the Granite Region Including Fault Fractured Zone)

  • 한공창;류동우;김선기;배기충
    • 터널과지하공간
    • /
    • 제18권1호
    • /
    • pp.58-68
    • /
    • 2008
  • 임하댐 비상여수로 터널 공사가 단층파쇄대가 포함된 화강암지역에 굴착되고 있는데 본 터널이 3련 터널임을 감안하여 터널이격거리, 터널막장간 이격거리를 검토하였으며 단층파쇄대가 여수로 터널의 안정성에 미치는 영향을 검토하였다. 이를 위해 여러 가지 지구물리학적 조사와 암반공학적 현장 실험을 실시하였다. 터널 막장간 이격거리는 최소 25 m 이상을 유지하면서 2터널의 선행 굴착이 적합하리라 판단되며 단층대의 영향을 받는 터널 만곡부의 3차원 수치해석결과 2터널의 천단변위 및 내공변위는 미미하며 숏크리트 최대 휨압 축응력, 숏크리트 최대전단응력, 록볼트 최대축력 등을 살펴보면 만곡부 굴착에 따른 응력집중은 미미하여 여수로 터널의 안정성에는 문제가 없는 것으로 판단되었다.

터널 굴착면에서의 전기비저항 탐사 적용성에 관한 수치해석 연구 (Numerical simulation study on applicability of electrical resistivity survey at tunnel face)

  • 이명종;김낙영;이상래;황범식;하명진;김기석;조인기;이강현
    • 한국터널지하공간학회 논문집
    • /
    • 제24권3호
    • /
    • pp.279-292
    • /
    • 2022
  • 설계 단계의 지반조사에서 예측되지 않은 이상대는 터널 시공 중 많은 문제를 발생시킬 수 있다. 따라서 터널의 붕괴 예방을 위해 터널 시공 중 굴착면 전방의 지질상태를 예측하는 것은 매우 중요하다. 터널 굴착면에서 전기비저항 탐사를 하더라도, 기존의 전기비저항 탐사 프로그램들은 터널을 모델링하지 못하기 때문에 왜곡된 결과를 얻을 수 있다. 따라서 본 연구에서는 터널의 형태를 고려할 수 있는 전기비저항 모델링 프로그램을 개발하였다. 개발된 프로그램을 이용하여 터널에서 전기비저항 탐사에 대한 수치모델링 및 역산을 수행하였다. 그 결과, 굴착면 전방의 이상체의 위치 및 상태를 잘 예측하는 것으로 나타났다.

CFD modelling and the development of the diffuser augmented wind turbine

  • Phillips, D.G.;Richards, P.J.;Flay, R.G.J.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.267-276
    • /
    • 2002
  • Research being undertaken at the University of Auckland has enabled Vortec Energy to improve the performance of the Vortec 7 Diffuser Augmented Wind Turbine. Computational Fluid Dynamic (CFD) modelling of the Vortec 7 was used to ascertain the effectiveness of geometric modifications to the Vortec 7. The CFD work was then developed to look at new geometries, and refinement of these led to greater power augmentation for a given diffuser exit area ratio. Both full scale analysis of the Vortec 7 and a wind tunnel investigation of the development design have been used for comparison with the CFD model.

Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis

  • Khezri, Nima;Mohamad, Hisham;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.471-492
    • /
    • 2016
  • Underground tunnelling is one of the sustainable construction methods which can facilitate the increasing passenger transportation in the urban areas and benefit the community in the long term. Tunnelling in various ground conditions requires careful consideration of the stability factor. This paper investigates three dimensional stability of a shallow circular tunnel in a layered soil. Upper bound theorem of limit analysis was utilised to solve the tunnel face stability problem. A three dimensional kinematic admissible failure mechanism was improved to model a layered soil and limiting assumptions of the previous studies were resolved. The study includes calculation of the minimum support pressure acting on the face of the excavation in closed-face excavations. The effects of the characteristics of the layers on the minimum support pressure were examined. It was found that the ratio of the thickness of cover layers particularly when a weak layer is overlying a stronger layer, has the most significant influence on the minimum tunnel support pressure. Comparisons have been made with the results of the numerical modelling using FLAC3D software. Results of the current study were in a remarkable agreement with those of numerical modelling.