• Title/Summary/Keyword: Tunnel maintenance

Search Result 331, Processing Time 0.02 seconds

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

A research framework for development of a LCCA based tunnel asset management system (LCCA기반 터널 자산관리 시스템 개발을 위한 연구개발 프레임웍 설계)

  • Lee, Seung Soo;Kim, Kwang Yeom;Kim, Dong-Gyou;Shin, Hyu-Soung;Seo, Jong Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.615-625
    • /
    • 2014
  • As many parts of Korea are mountainous, many tunnels have been constructed to be in step with rapid economic development since 1970's. However, the interest on maintenance of tunnels is far less than the awareness of need for tunnels. As the tunnel maintenance system is the responsive maintenance system which responds to the problems found during the inspection, it will be very difficult to respond to each problem with the limited budget and manpower of the government agencies when the number of aged tunnels rapidly increase in the future. As such, this study presents the need for the LCCA (Life Cycle Cost Analysis) based tunnel asset management system to transform the tunnel maintenance to a preventive management system in a strategic and long-term viewpoint and proposes the framework for development direction. It observed the asset management implementation cases of social infrastructure in other countries and analyzed the need for asset management technique to manage the tunnels in Korea. Moreover, it applied the LCCA model, which is the economic and engineering quantitative decision making technique, for tunnel asset management to present the concrete direction for development of an asset management model and designed the R&D framework to systemize it.

A Study on the Loss and Damage Ratio of Railroad Tunnel Maintenance Monitoring Sensor (철도터널 유지관리 계측센서의 손망실율 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.262-270
    • /
    • 2018
  • Purpose: This paper investigates and analyzes the loss and damage ratio of maintenance monitoring sensor in metropolitan and high speed railroad tunnel in Korea and abroad. Method: After 5~6 years from the installation, the maintenance monitoring sensor on metropolitan transit tunnels showed the loss and damage ratio from 14.2% to 14.8% in Seoul metro line no. 5, 6, 7, 9, and 13.9% in UK channel tunnel. Based on the result, 15% is thought to be a proper set for the elapsed years, which is 5 years from the installation. Results: The maintenance monitoring sensor on high speed railroad tunnels showed the loss and damage ratio of 60.9% in Ho-Nam high speed railroad on 1 stage after 3 ~ 5 years from the installation, which was approximately 4 times as high as that of Seoul metro line no. 5, 6, 7, 9. Conclusion: Kyung-Bu high speed railroad on 2 stage, after 8~10 years from the installation, showed the loss and damage ratio of 66.8%. Based on the result, it can be inferred that the loss and damage ratio increases drastically after 5~10 years from the installation. Therefore, it is necessary to study on the loss and damage ratio of long term elapsed years, especially more than 10 years from the installation.

Development of Tunnel Management Database System for Korea National Railways (철도 터널 유지관리 데이타베이스 시스템 개발)

  • 황희수;홍선호;박지원;양재성
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.111-118
    • /
    • 1998
  • This paper describes the development of the database system for tunnel management of Korea National Railways. In order to make the system both target independent and accessible by KNR network or modem, authors developed the system as a web-based application using java language and IBM DB2 database. The system includes the searching, reporting, graphical representation and statistical functions for tunnel data, maintenance records and checking records. Later, the system will be extended to include the process for tunnel state rating and maintenace prioritiy decision-making.

  • PDF

A Study on the Application of Convergence Measurement System to Inverse Calculation of Tunnel Lining Sectional Forces (터널 라이닝 단면력 역산을 위한 유지관리 내공변위계측시스템 적용 연구)

  • 이대혁;김기선;한일영;박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.146-155
    • /
    • 2001
  • An inverse calculation method to obtain sectional forces, axial force and flexural moment of a tunnel concrete lining was developed by utilizing convergence measurements acquired at the maintenance stage. To monitor the behavior of the lining, DOCS system was applied to a subway tunnel section. The method was proved to be effective, yielding the same results as measured forces of buried instruments. Many effects such as vibration of sensors, vibration due to test train operation, the variation of temperature and high voltage were checked and a new management scheme for tunnel maintenance was proposed.

  • PDF

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.

A Scheme for the Evaluation of Tunnel Lighting Alternatives - Life Cycle Cost Comparison by Simulation Approach - (Life Cycle Cost 비교에 의한 터널조명 대안분석 연구)

  • Lee, Young-Q
    • IE interfaces
    • /
    • v.14 no.2
    • /
    • pp.205-209
    • /
    • 2001
  • The number of tunnel has fast increased with the rapid expansion of highway network. Tunnel should be designed to provide for drivers both safety and pleasant driving conditions. In this perspective, the design for tunnel lightning is very important in order to provide its safety, pleasantness, and cost-efficienty of maintenance, all of which should be considered and analyzed for a better tunnel lighting. This paper attempts to compare the low-pressure sodium lamp, which has usually been used for tunnel lighting, with the fluorescent lamp, which we consider as an alternative for the former. In an effort to determine the number of lamps to meet the required illuminance in the tunnel, this research employs a simulation technique which would allow us to conjecture, with the aid of basic model, the life cycle cost for illumination per each tunnel. This analysis is expected to provide a basic method and related information for tunnel development and design.

  • PDF

Case Study on Technology and Regulation Improvement of Subway Maintenance Monitoring (지하철 유지관리 계측의 기술 및 제도 개선방안 연구)

  • 우종태;김홍석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.303-308
    • /
    • 2000
  • By means of analyzing of monitoring technology and monitoring regulation based on maintenance monitoring system installed in subway tunnel section, it needs monitoring system, development of operating program, monitoring analyzing system and development of analysis method, establishment of maintenance monitoring standard specification, and performance of responsible monitoring supervision for applying to subway monitoring maintenance effectively in future. It requires specialized monitoring and legislation of monitoring subcontract, improvement of monitoring work contract method, establishment the standard payment of monitoring, and effective calibration and correction of monitoring system in the plan of improving monitoring regulation.

  • PDF

Development of BIM for a Maintenance System of Subway Infrastructures (지하철 구조물 유지관리 시스템을 위한 BIM 개발)

  • Shim, Chang-Su;Kim, Seong-Wook;Song, Hyun-Hye;Yun, Nu-Ri
    • Journal of KIBIM
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 2011
  • BIM(Building Information Modeling) technologies are the most effective for the maintenance of infrastructures because they provide information sharing througout the life-cycle of structures and support close communication between different project stages. Systematic and well-organized data play a fundamental role for the effective maintenance of subway tunnel. In this paper, 3D information models for maintenance of BIM-based subway tunnel structures are developed. Standard classifications for the maintenance and construction information classification system were adopted. A classification system based on construction information classification system was built considering procedures of maintenance work. It provides optimization and standardization of the work flow for the maintenance of subway structures by applying information modeling processes instead of the current maintenance practices. It can effectively reduces the life cycle cost and time for the maintenance. The proposed system can be utilized for the maintenance history management to enhance current maintenance system.