• Title/Summary/Keyword: Tunnel lining temperature

Search Result 51, Processing Time 0.027 seconds

Alteration of mechanical properties of tunnel structural members after a tunnel fire accident (화재 후 터널구조물 시공재료의 역학적 특성변화)

  • Chang, Soo-Ho;Choi, Soon-Wook;Kwon, Jong-Wook;Kim, Sang-Hwan;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.157-169
    • /
    • 2007
  • This study aimed to quantify the deterioration of tunnel structural members such as concrete lining and shotcrete lining after a tunnel fire accident by measuring their mechanical properties between $300^{\circ}C$ and $1,000^{\circ}C$. From the experiments, it was revealed that the critical temperature where mechanical properties start to decrease linearly was approximately $300^{\circ}C$. In addition, the other critical temperature where macro-cracks are induced in specimens was around $600^{\circ}C$. From a series of regression analysis, the optimum regression function with correlation coefficients over 0.99 for mechanical properties at different temperature levels was obtained as the Boltzmann function. Finally, a schematic diagram to estimate temperature distribution inside structural members as well as their mechanical properties at corresponding temperature levels quantitatively was newly proposed for RABT and RWS fire scenarios.

  • PDF

Research of Early-age Strength Development Technology for Remove the Steel Form of Large-wide Tunnel Lining Concrete (대단면 터널 라이닝 거푸집의 조기 제거를 위한 초기 강도 발현 기법 연구)

  • Kim, Kwang-Don;Lee, Deuk-Bok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.116-127
    • /
    • 2014
  • The studies were carried out to process one cycle for a day to the large section tunnel lining concrete. Climatic characteristics of the tunnel inside are changed, when the temperature of the concrete placement is low, the mold remove time is increased that the heat of hydration speed be delayed because affects the strength development, to compensate for this, after installing the curing sheet on both sides of the steel form and installation of tunnel entrance, when it comes to providing the additional heat source of $28{\pm}2^{\circ}C$ therein, it was to be achieved early strength development control standards (4.5MPa) presented as a crack control scheme or more, thus, It was able to remove after age of 14hr from mold. On the other hand, under the conditions of $10{\pm}1^{\circ}C$ that a natural curing temperature in the tunnel, it was analyzed must ensure the curing time of 36hr or more after concrete placement. Throughout this study, the concrete strength development and the temperature in the early-age concrete, it can find that reverify the curing temperature is greatly affected, even concrete fly ash is mixed 10%, if it is possible to raise the surface temperature for a predetermined time, is not a problem in the early strength development.

An Study on Heat Transfer Analysis to Concrete PC Pannel Lining under Tunnel Fire Scenario (터널 화재시나리오에 따른 콘크리트 PC패널 라이닝의 전열특성에 관한 해석적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hoon;Shin, Hyun-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.487-492
    • /
    • 2009
  • This study was performed FE numerical analysis under 120-minute fire conditions, using the ABAQUS, a wide use software, on the basis of the test results by concrete tunnel lining fire strengths (ISO, RWS, and MHC). The concrete material test was to secure the material properties of concrete linings, which were numerical analysis input conditions. And then built the material properties, such as specific heat, heat transfer rate, heat expansion rate, density, elasticity coefficient and compression strength under high temperature conditions, as database at 20 $^{\circ}C$ to 800 $^{\circ}C$, applying them to analysis as input values. As a result, the tunnel linings under RWS fire conditions saw fire temperature rose to maximum 1119 $^{\circ}C$at the location of 5 mm above a thermal surface, and saw surface temperature amount to 1214 $^{\circ}C$ in the middle part.

  • PDF

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.

Tensile strength evaluation of SFRC subjected to high temperature using double punch test (DPT 실험을 이용한 고온노출된 강섬유보강콘크리트의 인장강도 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil;Kim, Hee-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Steel fiber-reinforced concrete (SFRC) is widely used for tunnel lining structure such as shot-crete in NATM tunnel and segment in TBM tunnel. In tunnel fire accidents, structural performance of a lining is very important because the lining is the structure that directly exposed to fire. In this study, the effects of high temperatures, mix ratios and types on failure pattern, DPT tensile strength and coefficient of variation were investigated through Double Punch Tests (DPT) of SFRC subjected to high temperatures. In the results, it is confirmed that the residual DPT tensile strength increases as for SFRC and this is more in SFRC with higher mix ratio. But, the equation for evaluation of DPT tensile strength does not involve the number of failure surfaces SFRC specimens subjected to high temperatures, therefore, it is required to investigate more fracture energy in DPT tests.

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

A Study on Development of Furnance for Road Tunnel Lining Fire Damage Evaluation (도로터널 라이닝 화재손상 평가를 위한 가열로 개발에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.479-483
    • /
    • 2008
  • There are no International Standards or Criteria pertaining to fires inside tunnels at the moment, but there are some fire-related regulations in some advanced countries such as Germany and the Netherlands where some fire-related studies have been expedited. Germany has established regulations related to the safety of structures by stipulating Fire Curves of RABT and EBA Tunnels. Also, the Netherlands has established the resistance capacity of structures by stipulating RWS curve so that they can prevent the adjacent area from being damaged due to a tunnel collapse. Hydrocarbon Fire Curve is the standard assessing the behaviour of a structure in a serious fire, by increasing the heating speed and the maximum temperature of ISO 834 Curve, while MHC Fire Curve, which was established in France, realizes more serious fire conditions. In this study, we aimed to develop the basis of full-sized experiments, with which you can assess the fire-resisting capacity against the fire strength of concrete PC panel lining, through the realization of various tunnel fire curves as mentioned above, by developing the heating furnace suitable for the requirements of Fire-Resisting Standards, with which you can assess the fire damage of tunnel concrete lining. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F2257-1. We have also conducted a calibrating experiment in order to secure its reliability.

  • PDF

A Study on Pore Pressure Evaluation of Concrete Lining in Road Tunnel Fire (도로터널 라이닝 화재조건 콘크리트 라이닝 공극압력 특성에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Yoo, Yong-Ho;Lee, Chul-Ho;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.484-489
    • /
    • 2008
  • We carried out a one-way heating experiment on the PC panel manufactured by changing the filling depths(20,30,40,50mm) of concrete regarding the fire strength in order to measure the inner concrete pressure which is a direct cause of concrete spalling. This fire experiment was conducted under the fire strength conditions of ISO 834 Standard, Modified Hydrocarbon and the maximum value of Pore Pressure was measured. As a result of analyzing the time it took to reach maximum pressure, it showed that the time rising to the maximum pressure of high strength concrete of 40MPa is slower than that of a 24MPa tunnel lining. In case of ISO fire conditions, spalling damage might take place in heating period of $20{\sim}40$ minutes in the range of $100{\sim}200^{\circ}C$ temperature. In case of MHC fire conditions, the area damaged by fire can appear after a lapse of $25{\sim}50$ minutes in the range of $150{\sim}250^{\circ}C$ temperature.

  • PDF

An Experimental Study on Thermal Damage under Tunnel Fire Scenario to Concrete PC Pannel Lining (터널 화재시나리오에 따른 콘크리트 PC패널라이닝의 열적손상에 관한 실험적 연구)

  • Kim, Heung-Youl;Park, Kyung-Hun;Kim, Hyung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.477-480
    • /
    • 2008
  • In tunnel, though the frequency of fire occurrence is relatively lower than other structures, the characteristics of sealed space tends to cause the temperature to rapidly rise to more than $1000^{\circ}C$ within 5 minutes after fire, which might eventually lead to a large fire that usually results in a loss of lives and the damage to the properties, not to mention a huge cost necessary for repair and maintenance after fire. Referring to foreign tunnel fire scenarios, it clarified the heat transfer characteristics of concrete PC panel lining depending on fire intensity (ISO, MHC, RWS), and to identify the range of thermal damage, the evaluation was carried out using ITA standard. As a result, 39mm under ISO fire condition, 50mm under MHC and 100mm under RWS were measured. And when it comes to spalling, 30mm was measured under RWS. When PC panel was designed to serve the support, a fire resistance to the minimum depth of 100mm of the concrete that might be damaged under the fire shall be maintained, and in case of a non-support structure, PC lining shall have at least 100mm thickness.

  • PDF

Fire-Resistance Characteristics of Shield Tunnel Concrete Linings (쉴드터널 콘크리트 라이닝의 내화특성)

  • Park Hae Geun;Lee Myeong Sub;Jeon Sang Eun;Park Dong Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.32-35
    • /
    • 2004
  • In recent years a number of catastrophic tunnel fires, the Euro tunnel, the Mont Blanc tunnel, the Tauem tunnel and the Gotthard tunnel, have occurred and inflicted serious damages to European countries. If a fire occurs in shield tunnels, the reinforced concrete segment linings playing as an important structural member is expected to damage severely and finally can be caused the collapse of tunnel. The purpose of this study is to evaluate the performance of concrete segment lining under heat exposure and to obtain information to assist a new technical approach to fighting fires in tunnels. In order to evaluate the fire-resistance performance of concrete segment by adding Polypropylene fibers, fire tests using the RABT heat-load curve is carried out. The temperature rise of this curve is very rapid up to $1200^{\circ}C$ within 5 minutes, and duration time of the $1200^{\circ}C$ exposure is 55 minutes. From the fire test, it was found that the explosive spalling was rapidly reduced by adding polypropylene fibers and this method is considered as an effective fireproof material to upgrade fire safety in tunnels economically.

  • PDF