• 제목/요약/키워드: Tunnel image

검색결과 243건 처리시간 0.023초

자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정 (Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements)

  • 김진석;성재용;김정수;최종욱;김성초
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

차량 검출을 위한 다중객체추적 알고리즘 (Multi-Object Tracking Algorithm for Vehicle Detection)

  • 이근후;김규영;박홍민;박장식;김현태;유윤식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.816-819
    • /
    • 2011
  • 터널 내에서의 사고 유발 요소는 CCTV 카메라를 이용하여 검출하여 조기에 대응함으로써 차량의 정체뿐만 아니라 인적 물적 피해를 최소화하기 위하여 영상인식시스템이 도입되고 있다. 본 논문에서는 터널 내에서 여러 차량을 추적하는 알고리즘을 제안한다. 제안하는 알고리즘은 Adaboost 알고리즘을 이용하여 차량을 검출하고 검출된 차량(객체)에 대하여 템플릿 매칭 기법을 이용하여 차량을 추적한다. 컴퓨터 시뮬레이션을 통하여 제안하는 알고리즘이 여러 차량을 추적하는데 유용한 것을 확인 하였다.

  • PDF

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구 (A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow)

  • 이기백;손정호;양장식
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).

직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구 (Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear)

  • 김태혁;이상돈;이정인
    • 터널과지하공간
    • /
    • 제4권3호
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

풍력터빈 블레이드 주위 흐름의 유동특성에 대한 실험적 분석 (Experimental Analysis of Flow Characteristics around Wind-Turbine Blades)

  • 이정엽;이상준
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.64-71
    • /
    • 2010
  • The flow and noise characteristics of wake behind wind-turbine blades have been investigated experimentally using a two-frame particle image velocimetry (PIV) technique. Experiments were carried out in a POSTECH subsonic large wind-tunnel ($1.8^W{\times}1.5^H{\times}4.3^L\;m^3$) with KBP-750D (3-blade type) wind-turbine model at a freestream velocity of $U_o\;=\;15\;m/s$ and a tip speed ratio $\lambda\;=\;6.14$ (2933 rpm). The wind-turbine blades are connected to an AC servo motor, brake, encoder and torque meter to control the rotational speed and to extract a synchronization signal for PIV measurements. The wake flow was measured at four azimuth angles ($\phi\;=\;0^{\circ}$, $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$) of the wind-turbine blade. The dominant flow structure of the wake is large-scale tip vortices. The turbulent statistics such as turbulent intensity are weakened as the flow goes downstream due to turbulent dissipation. The dominant peak frequency of the noise signal is identical to the rotation frequency of blades. The noise seems to be mainly induced by the tip vortices.

Investigation of passive flow control on the bluff body with moving-belt experiment

  • Rho, Joo-Hyun;Lee, Dongho;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.139-148
    • /
    • 2016
  • The passive control methods such as horizontal and vertical fences on the lower surface of the bluff body were applied to suppress the vortex shedding and enhance the aerodynamic stability of flow. For investigating the effects of the passive control methods, wind tunnel experiments on the unsteady flow field around a bluff body near a moving ground were performed. The boundary layer and velocity profiles were measured by the Hot Wire Anemometer (HWA) system and the vortex shedding patterns and flow structures in a wake region were visualized via the Particle Image Velocimetry (PIV) system. Also, it is a measuring on moving ground condition that the experimental values of the critical gap distances, Strouhal numbers and aerodynamic force FFT analyses. Through the experiments, we found that the momentum supply due to moving ground caused the vortex shedding at the lower critical gap distance rather than that of fixed ground. The horizontal and vertical fences increase the critical gap distance and it can suppress the vortex shedding. Consequently, the stability characteristics of the bluff body near a moving ground could be effectively enhanced by the simple passive control such as the vertical fences.

PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구 (Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques)

  • 백부근;김진;김경열;김기섭
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

패션디자인을 위한 전통복식의 활용현황에 관한 연구 (A Study on the Adaptation of the Traditional Costume for Fashion Design)

  • 금기숙
    • 복식
    • /
    • 제43권
    • /
    • pp.69-82
    • /
    • 1999
  • This study is focused on the aesthetic application of traditional Korean dress(Items) to the contemporary fashion design. The results are as follows: (1) Each traditional dresses have revealed their aesthetic characteristics according to the periods or time. (2) The dresses of certain period figures and items had been limited in use in fashion design today. (3) The most favoured dresses adapted in fashion design were Chosun costume and female top items were the most preferred in use. (4) The colors applied to the fashion design were also limited. The bright and strong color groups were the most popular colors among fashion designers for their works. White which stands for the image of korean and their dresses were also preferred in use. Therfore experts in various arena of fashion business have to keep in mind following problems:(1) They have to study traditional dresses to enhance their historic knowledges and appreciate their aesthetic beauties (2) Various kinds of dresses from many periods items should be tried to adapt in fashion design by the designers. (3) Various male attires also should be adapted in fashion design. (4) various methodologies are recommended to apply in fashion design (5) fashion moods should be examined to make the krean fashion design rich The plastic characteristics of Korean traditional dresses could be interpreted as a tunnel to show the esprit of Korean and the aesthetic of Korean dresses through the works of fashion design for the international fashion markets or societies.

  • PDF

재현된 반류의 영향을 받는 프로펠러 후류 내 불안정한 날개끝 보오텍스 구조에 대한 정량적 가시화 (Visualization of Unstable Vortical Structure in a Propeller Wake Affected by Simulated Hull Wake)

  • 김경열;백부근;안종우
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.620-630
    • /
    • 2008
  • The characteristics of complicated propeller wake influenced by hull wake are investigated by using a two-frame PIV (Particle Image Velocimetry) technique. As the propeller is significantly affected by the hull wake in a real marine vessel, the measurements of propeller wake under the hull wake would be certainly necessary for more reliable validation and the prediction of numerical simulation with wake modeling. Velocity field measurements have been conducted in a medium-size cavitation tunnel with a hull wake. Generally, the hull wake generated by the boundary layer of ship's hull produces the different loading distribution on the propeller blade in both upper and lower propeller planes. The difference of the propeller wake behaviors caused by the hull wake is discussed in terms of axial velocity, vorticity and turbulence kinetic energy distribution in the present study.