• Title/Summary/Keyword: Tunnel face

Search Result 425, Processing Time 0.022 seconds

Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method

  • Zhang, Biao;Ma, Zongyu;Wang, Xuan;Zhang, Jiasheng;Peng, Wenqing
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.43-54
    • /
    • 2020
  • The limit analysis and response surfaces method were combined to investigate the reliability of pressurized tunnel faces subjected to seismic force. The quasi-static method was utilized to introduce seismic force into the tunnel face. A 3D horn failure mechanism of pressurized tunnel faces subjected to seismic force was constructed. The collapse pressure of pressurized tunnel faces was solved by the kinematical approach. The limit state equation of pressurized tunnel faces was obtained according to the collapse pressure and support pressure. And then a reliability model of pressurized tunnel faces was established. The feasibility and superiority of the response surfaces method was verified by comparing with the Monte Carlo method. The influence of the mean of soil parameters and support pressure, variation coefficients, distribution type and correlation of c-φ on the reliability of pressurized tunnel faces was discussed. The reasonable safety factor and support pressure required by pressurized tunnel faces to satisfy 3 safety levels were presented. In addition, the effects of horizontal seismic force, vertical seismic force and correlation of kh-kv on the reliability of pressurized tunnel faces were also performed. The method of this work can give a new idea for anti-seismic design of pressurized tunnel faces.

Deformation characteristics of surrounding rock in the intersection area between main tunnel and construction adit of the Xianglushan tunnel

  • Yunjuan Chen;Mengyue Liu;Fuqiang Yin;Lewen Zhang;Jing Wu;Jinrui Li
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The construction adit plays a pivotal role in enhancing the working face during the excavation of long-distance and deep hydraulic tunnels. However, the intersection zone between the main tunnel and the construction adit exhibits more intricate deformation patterns in surrounding rock, posing a significant threat to stability during excavation. Taking the Xianglushan tunnel in Yunnan Province, China, as a case study, the FLAC3D software is employed to simulate the excavation process at the intersection. The simulation results are verified combined with the field deformation monitoring results, and the spatial distribution of tunnel rock deformation in the intersection area are analyzed. Five excavation conditions with different intersection angles are simulated, and the surrounding rock deformation of the tunnel intersection area with different intersection angles is analyzed, and its influence range is discussed. The results show that: (1) The surrounding rock deformation in the intersection area increases rapidly during the tunnel excavation. With the increase of construction distance, the deformation of intersection area is gradually stable. (2) The deformation distribution of the tunnel rock is uneven, and the deformation of main tunnel near the intersection area is larger than that far away from the intersection area. (3) With the increase of the intersection angle, the surrounding rock deformation of the tunnel intersection and its influence range decreases gradually. The research results have certain guiding significance for the construction safety of the tunnel intersection area.

TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application (막장전방 예측기법에 근거한 TBM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Park, Jeongjun;Lee, Kang-Hyun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • When utilizing a Tunnel Boring Machine (TBM) for tunnelling work, unexpected ground conditions can be encountered that are not predicted in the design stage. These include fractured zones or mixed ground conditions that are likely to reduce the stability of TBM excavation, and result in considerable economic losses such as construction delays or increases in costs. Minimizing these potential risks during tunnel construction is therefore a crucial issue in any mechanized tunneling project. This paper proposed the potential risk events that may occur due to risky ground conditions. A resistivity survey is utilized to predict the risky ground conditions ahead of the tunnel face during construction. The potential risk events are then evaluated based on their occurrence probability and impact. A TBM risk management system that can suggest proper solution methods (measures) for potential risk events is also developed. Multi-Criterion Decision Making (MCDM) is utilized to determine the optimal solution method (optimal measure) to handle risk events. Lastly, an actual construction site, at which there was a risk event during Earth Pressure-Balance (EPB) Shield TBM construction, is analyzed to verify the efficacy of the proposed system.

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel (토사터널의 쉴드 TBM 데이터 시계열 분석을 통한 막장 전방 예측 연구)

  • Jung, Jee-Hee;Kim, Byung-Kyu;Chung, Heeyoung;Kim, Hae-Mahn;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.227-242
    • /
    • 2019
  • This paper presents a method to predict ground types ahead of a tunnel face utilizing operational data of the earth pressure-balanced (EPB) shield tunnel boring machine (TBM) when running through soil ground. The time series analysis model which was applicable to predict the mixed ground composed of soils and rocks was modified to be applicable to soil tunnels. Using the modified model, the feasibility on the choice of the soil conditioning materials dependent upon soil types was studied. To do this, a self-organizing map (SOM) clustering was performed. Firstly, it was confirmed that the ground types should be classified based on the percentage of 35% passing through the #200 sieve. Then, the possibility of predicting the ground types by employing the modified model, in which the TBM operational data were analyzed, was studied. The efficacy of the modified model is demonstrated by its 98% accuracy in predicting ground types ten rings ahead of the tunnel face. Especially, the average prediction accuracy was approximately 93% in areas where ground type variations occur.

A New Design Method of Reinforcement Ahead of a Tunnel Face by using Convergence-confinement Method and Load-transfer Approach (내공변위-제어법과 새로운 하중전이함수를 이용한 터널 천단보강공 설계)

  • In, Sung-Yoon;Jeong, Sang-Seom;Kim, Yong-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.81-90
    • /
    • 2009
  • In this study the behavior of a steel pipe structure used as an auxiliary method was evaluated by the convergence-confinement method and load-transfer approach, and the result was compared with that of numerical approach and in-situ measured data. As calculated partially increased displacement of the installed pipe to obtain the tunnel displacement. A numerical analysis simulate well the general behavior of measured displacement of tunnel crown. Through this study, it was found that the proposed procedure produces conservative result so that it can be applied in preliminary design of the auxiliary method of tunnel face.

A Study on Analysis for the Characteristics of Fault Zone at Mica-schist for Reinforcement of Large-Span Tunnel (대단면 터널 보강을 위한 운모편암 단층대 특성 분석에 관한 연구)

  • Chung, Hoi-Yong;Kim, Young-Geun;Park, Yeon-Jun;You, Kwang-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.132-145
    • /
    • 2009
  • Faults in rock mass have strong influences on the behaviors of rock structure such as rock slope, tunnel and underground space. Thus, it is very important to analyse for the characteristics of fault rocks in design for tunnel. But, due to the limitation of geotechnical investigation in design stages, tunnel engineers have to carry out the face mapping and additional geological survey during tunnel excavation to find the distribution of faults and the engineering properties of faults for support and reinforcement design of tunnel. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large thrust fault zone through the large sectional tunnel is constructed in mica-schist region. Also, the distribution of structural geology, the shape of thrust faults and the mechanical properties of fault rock were studied for the reasonable design of the reinforcement and support method for the highly fractured fault zone in the large-span tunnel.

Experimental study on the ground arching depending on the deformation type of the crown in the shallow tunnel (얕은터널에서 천단의 변형형태에 따른 그라운드 아칭에 관한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.733-747
    • /
    • 2017
  • In the shallow tunnel, the surrounding ground could be loosened and deformed, which could be the cause of stress change in the ground. Terzaghi has clarified the development of a ground arching induced by the deformation of a tunnel crown in the trap door tests. However, he considered only the case in which that the tunnel crown deformed uniformly. He did not consider the effect of deformation shapes. Therefore, the relation between the shape of the ground relaxation above the tunnel crown and the deformation shape of the tunnel crown is not clear yet. In this study, model tests were performed for the three types of the tunnel crown, such as uniform, concave and convex shapes. As results, it was found that the vertical load would be transferred in various types depending on the deformation shapes of the tunnel crown.

Developments of real-time monitoring system to measure displacements on face of tunnel in weak rock (위험지반 터널 굴진면의 실시간 변위 감시를 위한 계측시스템 개발)

  • Yun, Hyun-Seok;Song, Gyu-Jin;Kim, Yeong-Bae;Kim, Chang-Yong;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.441-455
    • /
    • 2015
  • In the present study, a face safety monitoring system was developed that will enable judging collapse risks on faces during tunnel construction to secure workers' safety. This system enables detecting abnormal behaviors of faces by analyzing the displacement of faces measured in real time using the x-MR control chart technique. In addition, an algorithm to judge false alarms was developed so that abnormal behaviors of faces and errors occurring in the process of work can be distinguished from each other by comparing the number of measured values exceeding the management criteria and moving range k. The results of the present study are applicable to real-time monitoring of behavior on the face in dangerous ground sections to minimize damage to workers.

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF