• 제목/요약/키워드: Tunnel environments

검색결과 120건 처리시간 0.028초

건축물군의 바람길변화로 인한 풍하중 상호간섭 및 풍환경 (Interference Effects of Change in Wind Passage of a Building Group on Wind Loads and Wind Environments)

  • 조강표;홍성일;김무환;이옥진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.402-409
    • /
    • 2008
  • Wind loads and environments in realistic situations surrounded by neighboring buildings may be considerably different from those in idealized or simplified situations such as codes and standards. Interference effects of change in wind passage of a building group on wind loads and wind environments are reviewed. Wind-induced interference effects depend mainly on the building geometry and arrangement of these structures, their orientation and upstream terrain conditions. The most important factor among them may be the arrangement of building structures which can change the wind direction directly. Interference effects regarding wind loads are discussed with examples of window damages by typhoon and of pressure measurements in the boundary layer wind tunnel. Wind environment problems are also discussed, specially underlined on pedestrian comfort and safety. Various evaluation techniques or standards of wind environment are introduced. The change of wind velocity between the panel-type apartment buildings is examined, depending on the distance each other.

  • PDF

Large-eddy simulation and wind tunnel study of flow over an up-hill slope in a complex terrain

  • Tsang, C.F.;Kwok, Kenny C.S.;Hitchcock, Peter A.;Hui, Desmond K.K.
    • Wind and Structures
    • /
    • 제12권3호
    • /
    • pp.219-237
    • /
    • 2009
  • This study examines the accuracy of large-eddy simulation (LES) to simulate the flow around a large irregular sloping complex terrain. Typically, real built up environments are surrounded by complex terrain geometries with many features. The complex terrain surrounding The Hong Kong University of Science and Technology campus was modelled and the flow over an uphill slope was simulated. The simulated results, including mean velocity profiles and turbulence intensities, were compared with the flow characteristics measured in a wind tunnel model test. Given the size of the domain and the corresponding constraints on the resolution of the simulation, the mean velocity components within the boundary layer flow, especially in the stream-wise direction were found to be reasonably well replicated by the LES. The turbulence intensity values were found to differ from the wind tunnel results in the building recirculation zones, mostly due to the constraints placed on spatial and temporal resolutions. Based on the validated mean velocity profile results, the flow-structure interactions around these buildings and the surrounding terrain were examined.

터널 환경 측정 시스템 개발 및 측정 II -금정터널 측정결과 분석- (Development of Tunnel-Environment Monitoring System and Its Installation II -Measurement in Gumjung Tunnel-)

  • 박원희;조영민
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.758-765
    • /
    • 2016
  • 본 논문은 터널 환경 측정 시스템 개발 및 측정 I -개발 시스템 및 지하철터널 측정- [1]의 후속논문이다. 일반적인 철도터널 형태를 보이는 20.3 km 연장의 고속철도 복선터널인 금정터널에 환경측정장치를 설치하여 약 1년간 환경 측정한 결과에 대하여 논하였다. 월별 터널 내의 온도 및 상대습도에 대하여 측정한 결과를 분석하였으며, 겨울과 여름의 특정 일을 선택하여 측정결과를 분석하였다. 월별 온도의 경우, 터널 내부의 온도가 여름에는 외기의 온도와 거의 유사하였으나, 겨울에는 현저하게 높았다. 지중 온도가 연중 일정한 상황에서 여름에는 터널이 외기의 영향을 많이 받아 외기와 유사한 온도를 나타냈으나, 겨울에는 지열과 열차에서 발생하는 열 등에 의해 온도가 더 높은 것으로 보인다. 또한 측정장치의 설치 위치별 환경 특성에 대하여 분석하였다. 터널 내부에서는 외기와 바로 연결되어 있는 수직구와 사갱이 본선에 비하여 온도와 상대습도의 변화가 심하게 나타났는데, 이는 수직구와 사갱이 외기와 바로 연결되어 있어 외기의 영향을 더 많이 받기 때문이다. 이러한 분석 결과는 터널의 환기나 공기질 개선, 온열환경 개선 등의 연구에 폭넓게 사용될 수 있을 것으로 기대된다.

APPLICATION OF WIFI-BASED INDOOR LOCATION MONITORING SYSTEM FOR LABOR TRACKING IN CONSTRUCTION SITE - A CASE STUDY in Guangzhou MTR

  • Sunkyu Woo;Seongsu Jeong;Esmond Mok;Linyuan Xia;Muwook Pyeon;Joon Heo
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.869-875
    • /
    • 2009
  • Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..

  • PDF

영천댐 도수터널 주변지역 지하수위 영향 분석 (Effect of the Yeongcheon Dam Waterway Tunnel, Korea, on Local Groundwater Levels)

  • 김규한;문성우;서용석
    • 지질공학
    • /
    • 제33권3호
    • /
    • pp.461-474
    • /
    • 2023
  • 본 연구에서는 경상북도 청송군 현서면과 안덕면 일원에 설치되어 있는 영천댐 도수터널 구간과 도수터널 주변지역의 지하수위를 측정하여, 도수터널 시공 이전 대비 지하수위 회복여부를 조사하였다. 2017년 9월부터 2018년 8월까지 매월 1회 이상 총 12회에 걸쳐 지하수 관정 156공에 대한 지하수위를 측정하였으며 지하수위 관측조사 결과, 직접 영향구역에 분포하는 관정의 지하수위 값이 간접 영향구역의 값에 비하여 상대적으로 낮은 수치를 보이고 있다. 이러한 결과는 지형조건보다는 지질학적 불연속면으로 작용하는 도수터널에 의한 영향, 즉 지하수 흐름이 직간접적인 경로를 통하여 도수터널로 유출되는 것에 지배적으로 영향을 받는 것으로 추정되며, 향후 지하수 시설물의 유지관리 및 지하수 환경의 보전을 위하여 지속적인 모니터링 및 추가 조사가 필요하다.

터널 환경측정 시스템 개발 및 측정 I -개발 시스템 및 지하철터널 측정- (Development of Tunnel-Environment Monitoring System and Its Installation I -Monitoring System and Measurement in Subway Tunnel-)

  • 박원희
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8608-8615
    • /
    • 2015
  • 터널에 온도, 습도, 풍향, 풍속 등의 환경 데이터를 실시간으로 측정하여 전송 및 화재감지기의 경년시험 등을 수행할 수 있는 시스템을 개발하였다. 개발된 터널 환경측정 시스템은 철도터널 중 금정터널, 솔안터널 및 서울지하철 4호선 터널 등 국내 3개의 대표 터널 현장에 설치가 되어 약 1년 이상 터널환경이 측정되었으며 안정적으로 운용되었다. 또한 서울지하철 4호선 과천선 본선터널에 설치된 2기의 개발된 터널 환경 측정시스템으로부터 측정된 결과를 분석하였다. 개발된 터널 환경측정 시스템은 무선 통신망을 이용하여 터널 환경을 24시간 연속으로 안전적으로 분석가능하며 터널뿐만 아니라 여러 분야에 활용이 가능할 것이다.

실내실험에 의한 수평보강재로 보강된 터널막장의 거동 (Behavior of a tunnel face reinforced with longitudinal pipes - laboratory investigation)

  • 유충식;양기호
    • 한국터널지하공간학회 논문집
    • /
    • 제4권2호
    • /
    • pp.91-100
    • /
    • 2002
  • 본 논문에서는 수평보강재로 보강된 터널막장의 거동에 관한 내용을 다루었다. 터널막장 보강공법에 있어서 보강조건이 막장의 수평변위 및 지표침하에 미치는 영향을 고찰하기 위해 축소 모형실험을 수행하였다. 실험결과 수평보강재로 터널막장을 보강할 경우 막장의 변위 및 지표침하가 현저히 감소하는 것으로 나타나 도심지 터널시공에 있어서 지반거동 억제를 위한 보조 공법으로서 효과적으로 적용될 수 있는 것으로 나타났다. 아울러 지반거동 억제 효과는 보강조건에 따라 현저히 차이를 보이는 것으로 나타났다. 본 고에서는 연구결과를 종합하여 실무 적용시 주안점을 고찰하였다.

  • PDF

FRAMEWORK FOR HIGHLY INTEGRATED, INTEROPERABLE CONSTRUCTION SIMULATION ENVIRONMENTS

  • Simaan M. AbouRizk
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.71-82
    • /
    • 2009
  • This paper describes the use of a highly interactive and inter-operative application for complex simulation environments, or Synthetic Environments (SE), as deployed for construction as Construction Synthetic Environments (CSE). Based on the High Level Architecture (HLA), this research focuses on implementing simulation technology in a software environment, COSYE, that will be the foundation for building CSE applications. This framework is discussed in the context of tunneling and industrial construction applications, including steel fabrication and pipe-spool manufacture. The framework is demonstrated using the NEST sanitary tunnel project in Edmonton, Canada, in which COSYE was used for scenario-based analysis and planning.

  • PDF

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.

Flow-conditioning of a subsonic wind tunnel to model boundary layer flows

  • Ghazal, Tarek;Chen, Jiaxiang;Aboutabikh, Moustafa;Aboshosha, Haitham;Elgamal, Sameh
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.339-366
    • /
    • 2020
  • This study aims at modeling boundary layers (BLs) encountered in sparse and built environments (i.e. open, suburban and urban) at the subsonic Wind Tunnel (WT) at Ryerson University (RU). This WT has an insignificant turbulence intensity and requires a flow-conditioning system consisting of turbulence generating elements (i.e., spires, roughness blocks, barriers) to achieve proper turbulent characteristics. This system was developed and validated in the current study in three phases. In phase I, several Computational Fluid Dynamic (CFD) simulations of the tunnel with generating elements were conducted to understand the effect of each element on the flow. This led to a preliminary design of the system, in which horizontal barriers (slats) are added to the spires to introduce turbulence at higher levels of the tunnel. This design was revisited in phase II, to specify slat dimensions leading to target BLs encountered by tall buildings. It was found that rougher BLs require deeper slats and, therefore, two-layer slats (one fixed and one movable) were implemented to provide the required range of slat depth to model most BLs. This system only involves slat movement to change the BL, which is very useful for automatic wind tunnel testing of tall buildings. The system was validated in phase III by conducting experimental wind tunnel testingof the system and comparing the resulting flow field with the target BL fields considering two length scales typically used for wind tunnel testing. A very good match was obtained for all wind field characteristics which confirms accuracy of the system.