• Title/Summary/Keyword: Tunnel deformation

Search Result 469, Processing Time 0.026 seconds

A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels

  • Liu, Bo;Yu, Zhiwei;Han, Yanhui;Wang, Zhiliu;Yang, Shuo;Liu, Heng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.405-418
    • /
    • 2020
  • Deep excavation may have impact on the adjacent tunnels. It is obvious that the excavation will adversely affect and even damage the existing tunnels if the induced deformation exceeds the capacity of tunnel structures. It hence creates a high necessity to predict tunnel displacement induced by nearby excavation to ensure the safety of tunnel. In this paper, a simplified method to evaluate the heave of the underlying tunnel induced by adjacent excavation is presented and verified by field measurement results. In the proposed model, the tunnel is represented by a series of short beams connected by tensile springs, compressional springs and shear springs, so that the rotational effect and shearing effect of the joints between lining rings can be captured. The proposed method is compared with the previous modelling methods (e.g., Euler-Bernoulli beam, a series of short beams connected only by shear springs) based on a field measured longitudinal deformation of subway tunnels. Results of these case studies show a reasonable agreement between the predictions and observations.

Construction Plan by Large Diameter Shield TBM Method and Analysis of Deformation on Site Under Soo-Young River (대구경 Shield TBM공법에 의한 수영강 하저터널 시공계획 및 시공중 발생되는 거동의 공학적 분석)

  • 윤현돈;황규호;최기훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.25-32
    • /
    • 2001
  • Doosan Construction & Engineering Co., Ltd is building a railway tunnel beneath the Soo-Young River connecting MinLak Station and Centum City Station, a section 230, subway line 2, Pusan City, Korea. When completed the tunnel will have a finished inner diameter of 6.5m(21.311) throughout its total length of 840m(420m = 0.52 miles, Two Single Track Tunnel : 420m+420m). The ground profile of the face toward shield machine is composed of multi layers, silty clay, clayey gravel, soft rock etc. This research paper is to predict ground deformation and variation of stresses around tunnel using Hyperbolic model, and to reflect the works on the next shield tunneling project. And this research paper is analyzed data of measuring instrument (such as settlement gauge, inclinometer, Multiple extensometer, etc.) which is installed along tunnel line for safety of tunnel. For calculations, the finite difference Method is applied. Backfill grouting material is supposed to have instantly strength of 10kg/$\textrm{cm}^2$ above, although its strength is available after 24 hours passed.

  • PDF

Analysis of Ground Deformation Deformation using Resistivity Monitoring Technique at a Tunnel Excavation Area (전기비저항 모니터링을 이용한 터널 주변 지반상태 변화 파악)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Park, Sam-Gyu;Kim, Ki-Seog;Jung, Lae-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-100
    • /
    • 2007
  • During tunnel excavation, drawdown of groundwater table or discharge from tunnel faces may not only reduce stability of tunnel and work efficiency but cause environmental problems. We have investigated the applicability of electrical resistivity survey for the establishment of the monitoring system for groundwater behavior and detecting flow channel of groundwater during tunnel excavation. The groundwater level was continuously measured at several points for 1 year. Survey was conduted at every 3 months using preinstalled electrical resistivity cables on site. The results show that observed changes in resistivity ratios in the area can be explained with observed changes in groundwater level. Thus, we believed that electrical resistivity analysed together with groundwater data can be applied for the monitoring of groundwater in tunnel area.

  • PDF

Deformation Characteristics of Crushed Rock-Soil Mixtures of Railway Subgrade under Train Cyclic Loadings (암과 흙 혼합재료로 이루어진 철도노반의 열차 반복하중 작용에 의한 변형특성)

  • Kim, Dae-Sang;Park, Seong-Yong;Lee, Yong-Il;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.955-963
    • /
    • 2008
  • There are lots of tunnel intervals in the KTX II stage construction line for the linearity of railway line passing mountain region. In order to use the rocks from tunnel excavations, railway subgrades are constructed with crushed rock-soil mixtures. In this study, plain strain test using large scale box was conducted in order to analyze the characteristics of deformation behavior of railway subgrades composed of crushed rock-soil mixtures. The effects of variation of degree of saturation, stress level of applied loadings, and number of loading cycles on the resilient and permanent deformation behavior were analyzed. The results show that degree of saturation have a great effect on the deformation behavior of crushed rock-soil mixtures. The axial strain ranges between $0.1{\sim}0.8%$ with variation of degree of saturation, in assumption that deviatoric stress applied on the subgrade by high-speed train load is 55kPa.

  • PDF

A study on the prediction of tunnel crown and surface settlement in tunneling as a function of deformation modulus and overburden

  • Kim Seon-Hong;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.129-141
    • /
    • 2003
  • The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.

  • PDF

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.

Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel (파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구)

  • Kim Chang-Yong;Kim Kwang-Yeom;Moon Hyun-Koo;Lee Seung-Do;Baek Seung-Han
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.218-231
    • /
    • 2006
  • Anisotropic/heterogeneous rock mass shows various deformation behavior types due to tunnelling because deformation behavior is largely controlled by the spacial characteristics of geological factors such as faults, joints and fractured zone in rock mass. In this paper 2-dimensional numerical analysis on the several influencing factors is performed considering fractured zone located near tunnel. This numerical analysis shows that deformation behavior of tunnel are very different according to the width and the location of fractured zone and supper method. However, 3-dimensional analysis is necessary to consider 3-dimensional geometrical characteristics sufficiently since discontinuity and fractured zone have 3-dimensional geometry. Also flexible design/construction guidelines for tunnelling are required to cope with uncertain ground condition and circumstance for technically safe and economic tunnel construction.

Deformation Characteristics and Determination of Deformation Modulus of Rocks around the Lower Gangway during Coal Mining Operation (석탄층 하반갱도 주위암반의 변형특성 및 변형계수 결정연구)

  • 이현주
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.237-250
    • /
    • 1992
  • The cavities formed by the excavation of coal seam cause unstable within rock body, leading to large displacement around adjacent roadway. This displacement brings the closure of roadway and deformation of support. Therefore, it is necessary to understand and predict the deformation characteristics of roadway while coal seam is under excavation. In this study, the observed displacements are compared with the calculated ones through the analysis using Linear Boundary Element Mothod under the elastostatic conditions, in order to determine the virgin stress state and deformation modulus which affect the deformation characteristices.

  • PDF

Analysis of ground behavior for model tunnel excavation with pipe roof reinforcement using close range photogrammetric technique (근거리 사진계측기법을 이용한 강관보강 모형터널굴착의 지반거동 분석)

  • Lee, Jung-Hwan;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.387-402
    • /
    • 2014
  • In congested urban areas, constructions of tunnel structures have became necessary due to a lack of surface space. The excavation of any tunnel generated the ground disturbances of surrounding ground and displacements is major concern. Therefore, a study of tunnel stability is necessary. In this study, the authors have investigated the stability and failure pattern of tunnel through the model tunnel test. In this study, the close range photogrammetry was used to measure the ground deformation. The measured data was converted to displacement vectors and contours. And then it compared to FE analysis and empirical formula. In addition, this study presented the comparison between steel pipe reinforced model tunnel and unreinforced model tunnel. The ground deformation for both the steel pipe reinforced model tunnel and the unreinforced model tunnel was analysed.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.