• Title/Summary/Keyword: Tunnel aerodynamics

Search Result 127, Processing Time 0.022 seconds

A NUMERICAL STUDY ON AERODYNAMIC CHARACTERISTICS OF A ROTATING PARACHUTE IN STEADY DESCENDING MOTION (등속도로 하강중인 회전 낙하산의 공력특성에 관한 수치적 연구)

  • Je S.E.;Jung S.G.;Kwag S.H.;Myong R.S.;Cha T.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.52-56
    • /
    • 2006
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted to handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and produced good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations.

Effects of the yaw angle on the aerodynamic behaviour of the Messina multi-box girder deck section

  • Diana, G.;Resta, F.;Zasso, A.;Belloli, M.;Rocchi, D.
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.41-54
    • /
    • 2004
  • An analysis refinement of the Messina Strait suspension bridge project has been recently required, concerning mainly the yaw angle effects on the multi-box deck section aerodynamics and the vortex shedding at low reduced velocities $V^*$. In particular the possible interaction of the axial flow with the large cross beams has been investigated. An original test rig has been designed at this purpose allowing for both forced motion and free motion aero elastic tests, varying the average angle of attack ${\alpha}$ and the deck yaw angle ${\beta}$. The hydraulic driven test rig allowed for both dynamic and stationary tests so that both the stationary coefficients and the flutter derivatives have been evaluated for each yaw angle. Specific free motion tests, taking advantage from the aeroelastic features of the section model, allowed also the study of the vortex shedding induced phenomena.

Brâncuşi Endless Column: A Masterpiece of Art and Engineering

  • Solari, Giovanni
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.193-212
    • /
    • 2013
  • The Endless Column by Constantin Brâncuşi is "the most radical sculpture in the history of classic modernism", "the only one of modern times that can be compared with the great Egyptian, Greek and Renaissance monuments". It "is not only an artistic masterpiece, but also an extraordinary feat of engineering", the greatest example of collaboration between a sculptor and an engineer. This article illustrates the path that led the artist to conception of the column, its planning and construction, the investigations on preservation of the monument and its restoration, the aerodynamic tests in the wind tunnel, the modeling of the wind and the structure in virtue of which the aeroelastic instability, dynamic response and fatigue life were investigated. The conclusions discuss the column's role in the panorama of the great works of modern engineering.

Study of Flow Field and Pressure Distribution on a Rotor Blade of HAWT in Yawed Flow Conditions

  • Maeda, Takao;Kamada, Yasunari;Okada, Naohiro;Suzuki, Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.360-368
    • /
    • 2010
  • This paper describes the flow field and the blade pressure distribution of a horizontal axis wind turbine in various yawed flow conditions. These measurements were carried out with 2.4m-diameter rotor with pressure sensors and a 2-dimensional laser Doppler velocimeter for each azimuth angle in a wind tunnel. The results show that aerodynamic forces of the blade based on the pressure measurements change according to the local angle of attack during rotation. Therefore the wake of the yawed rotor becomes asymmetric for the rotor axis. Furthermore, the relations between aerodynamic forces and azimuth angles change according to tip speed ratio. By the experimental analysis, the flow field and the aerodynamic forces for each azimuth angle in yawed flow condition were clarified.

Wake Analysis of the HAWT by Windtunnel Test (실험을 통한 풍력발전기의 후류구조 분석)

  • Park, Ji-Woong;Kim, Ho-Geon;Shin, Hyung-Ki;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.273-276
    • /
    • 2006
  • To generate electricity from wind energy, wind turbine generally has a rotor blade. Since this rotor blade is a kind of the rotating machinery, the wake from the rotor is very Important role in the side of the aerodynamic performances. Thus the study about wake is essential to analyze wind turbine aerodynamics. In this study wake characteristics are analyzed by hot-wire probe in the K.A.F.A(Korea Air Force Academy) wind tunnel. It is possible to analyze the wake characteristics by hot-wire probe from acquiring the velocity fluctuations at given positions in the flow. This velocity data are arranged by trigger signal at same azimuth of the blade in periodic manner of the rotor blade. From this various wake characteristics are found : radial and axial position of the tip vortex, vortex core characteristics in the flow etc.

  • PDF

Study on drag reduction of commercial vehicle using flow control device (유동 제어 장치를 이용한 상용차량의 항력저감 연구)

  • S. H. Kim;J. J. Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.8-13
    • /
    • 2023
  • The primary challenge in improving fuel efficiency and reducing air pollution for commercial vehicles is reducing their aerodynamic drag. Various flow control devices, such as cab-roof fairing, gap fairing, cab extender, and side skirt have been introduced to reduce drag, however, the drag reduction effect and applicability are different depending on each commercial vehicle model. To evaluate the fuel consumption of heavy vehicles, a comprehensive research approach, including drag force measurement, flow field analysis is required. This study investigated the effect of a cab extender, which installed rear region of cab, on a drag coefficient of commercial vehicle through wind tunnel experiments and CFD. The results showed that the cab extender significantly modified the flow structure around the vehicle, leading to 8.2% reduction in drag coefficient compared to the original vehicle model. These results would provide practical application for enhancing the aerodynamic performance and fuel efficiency of heavy vehicle.

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou;Xuhui He;Teng Wu
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.295-307
    • /
    • 2024
  • The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

An Experimental Study for Construction of Aerodynamic Database of the Commercial Propeller (상용 프로펠러 공력 데이터베이스 구축을 위한 실험적 연구)

  • Shim, HoJoon;Kim, Geon-Hong;Cheon, HyeJin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.60-71
    • /
    • 2021
  • Propeller performance measurement system for commercial propeller was designed and applied to the wind tunnel test for 3 commercial propeller models with diameters of 30 inch. The thrust and torque of the propeller was directly measured by using 6-components balance installed on the rotating axis. The measurement system was validated by using wind tunnel balance calibration equipment. Propeller test stand including measurement and rotating system was validated by using QTP propeller. In the hovering condition, we compared the performance test results and the specifications of the commercial propeller provided by the manufacturer and confirmed that there are differences in the thrust and the torque. We measured the propeller performance with various wind speeds, propeller models and angles of attack and was summarized by thrust coefficients. We confirmed that the trend of the thrust coefficients was different in the low angle of attack and high angle of attack. An aerodynamics database that can be used for future aerodynamic design of an unmanned aerial vehicle was secured.

A Case Study in Engineering Design of Vehicle Aerodynamics Course by CO2 Model Dragster (CO2 모형 경주차를 이용한 차량 공기역학의 공학설계 사례연구)

  • Jang, Hyun-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2750-2757
    • /
    • 2010
  • Recently, there have been a number of voices from industry that automotive education at the college is too theoretical and so college graduates are lack of practical ability to apply the automotive idea to actual systems. In order to educate engineering students design qualities in creative problem solving, this paper reports the results of employing engineering design projects in a Motor sports course of at A College. This paper presents design creterion and manufacture process of $CO_2$ model dragster, measures $CO_2$ model dragster speed and aerodynamic drag. In order to investigate the impact of engineering design on student's learning, a survey was conducted in 2008 spring semester. According to the results of survey analyses, student's key competencies and satisfaction reports high values on engineering design projects.

An Analysis on Vibratory Loads Reduction using Individual Blade Control in Active Helicopter Rotors (지능형 헬리콥터 로터의 개별 블레이드 제어에 의한 진동하중 감소 해석)

  • Kim, Sung-Kyun;Shin, Sang-Joon;Kim, Tae-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.496-502
    • /
    • 2007
  • In the present paper, a new version of DYMORE, which is an analysis to solve a nonlinear multi-body dynamics problem, is used to simulate an Individual Blade Control (IBC) algorithm in order to reduce vibration in helicopter rotors. The Active Twist Rotor (ATR), in which Active Fiber Composites (AFC) are embedded, is utilized for IBC. The main purpose of the present investigation is to compare the analytical results with experiments and previous version of DYMORE. The experiments are performed at NASA Langley Transonic Dynamics Tunnel. According to the present result, it is observed that the correlation regarding the vibratory loads is improved.