• Title/Summary/Keyword: Tunnel Stability Estimation

Search Result 70, Processing Time 0.024 seconds

Designing of the Beheshtabad water transmission tunnel based on the hybrid empirical method

  • Mohammad Rezaei;Hazhar Habibi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.621-633
    • /
    • 2023
  • Stability analysis and support system estimation of the Beheshtabad water transmission tunnel is investigated in this research. A combination approach based on the rock mass rating (RMR) and rock mass quality index (Q) is used for this purpose. In the first step, 40 datasets related to the petrological, structural, hydrological, physical, and mechanical properties of tunnel host rocks are measured in the field and laboratory. Then, RMR, Q, and height of influenced zone above the tunnel roof are computed and sorted into five general groups to analyze the tunnel stability and determine its support system. Accordingly, tunnel stand-up time, rock load, and required support system are estimated for five sorted rock groups. In addition, various empirical relations between RMR and Q i.e., linear, exponential, logarithmic, and power functions are developed using the analysis of variance (ANOVA). Based on the significance level (sig.), determination coefficient (R2) and Fisher-test (F) indices, power and logarithmic equations are proposed as the optimum relations between RMR and Q. To validate the proposed relations, their results are compared with the results of previous similar equations by using the variance account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE) indices. Comparison results showed that the accuracy of proposed RMR-Q relations is better than the previous similar relations and their outputs are more consistent with actual data. Therefore, they can be practically utilized in designing the tunneling projects with an acceptable level of accuracy and reliability.

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

A study on analysis of tunnel behaviors considering the characteristics of in-situ stress distribution in rock mass (암반응력의 분포특성을 고려한 터널거동 분석에 관한 연구)

  • Part, Do-Hyun;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.275-286
    • /
    • 2007
  • In construction of a structure in underground space, in-situ stress in rock mass has great effect on the stability of the structure. Especially, the direction and magnitude of rock stress have influence on the excavation method, the choice of support and reinforcement method for establishing the stability of tunnel. Therefore, it is very important to consider the characteristics of in-situ stress in rock mass for tunnel stability analysis. In this study, a reasonable design method for underground structure was reviewed through the case study for tunnel design considering in-situ rock stress. For this purpose, the estimation for SRF (Stress Reduction Factor) as input parameter in rock classification using Q-System and the assesment for tunnel support were studied. Also, considering the characteristics of in-situ rock stress such as the magnitude of K and the direction of principal stress, the parameter studies for tunnel stability analysis were carried out. An improved method was proposed for obtaining the better results in the tunnel stability analysis.

  • PDF

Dynamic derivatives estimation of twinbee aircraft (쌍발복합재 항공기의 동적 미계수 측정)

  • 신충화;황명신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1663-1666
    • /
    • 1997
  • The purpose of this paper is to find how to determine the controllability and stability derivatives form flight test and to display the stability of the Twinbee aircraft. There are various methods developed to find the derivatives : wind tunnel testing, predicted result from empirical data, flight test and so on. Among those methods, the estimation form flight test of real aricraft is the most reliable. We performed the flight test of Twinbee and recorded the states of aorcraft. Using those states and parameter setimation algorithem based on the Maximum Likdlihood(MMLE) criterion, we can estimate the controllability and stability derivatives. In this paper, wel will show the process form designing the proper flight test input to estimation of derivatives.

  • PDF

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

A Study on Parameter Estimation for General Aviation Canard Aircraft

  • Kim, Eung Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.425-436
    • /
    • 2015
  • This paper presents the procedures used for estimating the stability and control derivatives of a general aviation canard aircraft from flight data. The maximum likelihood estimation method which accounts for both process and measurement noise was used for the flight data analysis of a four seat canard aircraft, the Firefly. Without relying on the parameter estimation method, several aerodynamic derivatives were obtained by analyzing the steady state flight data. A wind tunnel test, a flight test of a 1/4 scaled remotely controlled model aircraft, and the prediction of aerodynamic coefficients using the USAF Stability and Control Digital Data Compendium (DATCOM), Advanced Aircraft Analysis (AAA), and Computer Fluid Dynamics (CFD) were performed during the development phase of the Firefly and the results were compared with flight determined derivatives of a full scaled flight prototype. A correlation between the results from each method could be used for the design of the canard aircraft as well as for building the aerodynamic database.

Hybrid Analysis of Displacement Behavior and Numerical Simulation on Tunnel Design (터널 변위 거동 및 수치 모의실험의 결합 해석)

  • Jeong, Yun-Young;Han, Heui-Soo;Lee, Jae-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • This study is focused on the analysis of tunnel behavior to estimate the stability on tunnel design. An estimation method was proposed as a hybrid consideration, which contains the displacement analysis by 3D numerical simulation, the maximum displacement obtained after field measurement, and an assessment of tunnel stability using a deformation analysis proposed by Sakurai(1988, 1997). The points of case study by Sakurai(1988, 1997) were replotted considering his analysis. From the new analysis of the tunnel case study, the trend line for analyzed points is analogized, which curve is divided into stable, unstable and failure zone. To evaluate the estimation method, a special shape of railway tunnel was selected, which are the Inchon international airport rail way connected to subway line 9 in Gimpo, Korea. The point s of upper and below track on the Inchon international airport rail way were satisfied to the stability of tunnel after reinforcing. Also the points shows the higher apparent Young's modulus, which resulted from improvement on shear strength by the micro silica grouting and the supporting of umbrella method. Therefore, if new analysis used, proper tunnel reinforcing method could be selected according to tunnel strain and geological property.

Probabilistic analysis for face stability of tunnels in Hoek-Brown media

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.595-603
    • /
    • 2019
  • A modified model combining Kriging and Monte Carlo method (MC) is proposed for probabilistic estimation of tunnel face stability in this paper. In the model, a novel uniform design is adopted to train the Kriging, instead of the existing active learning function. It has advantage of avoiding addition of new training points iteratively, and greatly saves the computational time in model training. The kinematic approach of limit analysis is employed to define the deterministic computational model of face failure, in which the Hoek-Brown failure criterion is introduced to account for the nonlinear behaviors of rock mass. The trained Kriging is used as a surrogate model to perform MC with dramatic reduction of calls to actual limit state function. The parameters in Hoek-Brown failure criterion are considered as random variables in the analysis. The failure probability is estimated by direct MC to test the accuracy and efficiency of the proposed probabilistic model. The influences of uncertainty level, correlation relationship and distribution type of random variables are further discussed using the proposed approach. In summary, the probabilistic model is an accurate and economical alternative to perform probabilistic stability analysis of tunnel face excavated in spatially random Hoek- Brown media.

A Study on the Stability Estimation Procedure for Reinforced Pillar of Twin Tunnel (병설터널 보강 필라의 안정성 평가방법에 관한 연구)

  • Baek, Seungcheol;Jang, Busik;Lee, Taegyu;Lee, Sungmin;Hwang, Jungsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.81-91
    • /
    • 2009
  • Recently, twin-tunnel is often designed in the aspects of disaster prevention and economical reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour were conducted with varying ground strength, width of pillar and depth of earth cover and a series of regression analyses were carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested through the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies were conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method based on the Hoek-Brown Failure Criterion is verified through the results of parametric studies.

  • PDF