• Title/Summary/Keyword: Tunnel Spacing

Search Result 138, Processing Time 0.024 seconds

A Study on the Aerodynamic Load Characteristics of an Elliptic Airfoil (타원형 날개의 공력 특성 연구)

  • 이기영;손명환;김해원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2003
  • Using a wind tunnel testing, the aerodynamic load characteristics of an elliptic airfoil was described. The experimental data was obtained for angles of attack $-20^{\circ}$ to $+20^{\circ}$ with $2^{\circ}$ increments at a chord Reynolds number of $0.99{\times}105$ and $2.48{\times}105$. For each test case, chordwise suction pressure distributions and wake surveys were obtained. Static pressure measurements were made over a 10 sec averaging time at a 10 Hz sampling rate. For each case, wake survey was conducted with a pilot-static probe at 1.0c downstream from the trailing edge at very fine spacing to resolve the wake velocity deficit profile. As can be expected, suction pressure coefficient was increased with angle of attack. The normal force, CNmax, appeared peak value at the incidence angle of $12^{\circ}~14^{\circ}$, and the significant increase in profile drag at this range of angles of attack.

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

Investigation of Some Blast Design and Evaluation Parameters for Fragmentation in Limestone Quarries (석회석 광산의 파쇄도 관련 발파설계 및 평가 변수들에 대한 고찰)

  • Rai, Piyush;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.183-193
    • /
    • 2010
  • The present paper highlights some important fragmentation issues experienced in the limestone quarry blast rounds. In light of these major issues, the paper outlines influence of a few important design parameters, which bear merit to alter the blast performance in order to duly resolve the issues in field scale blast rounds. A comprehensive field based program for evaluation of such blast rounds has also been suggested. The knowledge disseminated in the paper, backed up by sufficient images, is largely based on the experience of the authors, while designing, implementing and evaluating numerous field scale blast rounds in cement grade limestone quarries.

Analysis of In-situ Rock Conditions for Fragmentation Prediction in Bench Blasting (벤치발파에서 파쇄도 예측을 위한 암반조건 분석)

  • 최용근;이정인;이정상;김장순
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.353-362
    • /
    • 2004
  • Prediction of fragmentation in bench blasting is one of the most important factors to establish the production plan. It is widely accepted that fragmentation could be accurately predicted using the Kuz-Ram model in bench blasting. Nevertheless, the model has an ambiguous or subjective aspect in evaluating the model parameters such as joint condition, rock strength, density, burden, explosive strength and spacing. This study proposes a new method to evaluate the parameters of Kuz-Ram model, and the predicted mean fragment sizes using the proposed method are examined by comparing the measured sizes in the field. The results show that the predictions using Kuz-Ram model with the proposed method coincide with field measurements, but Kuz-Ram model does not reflect the in-situ rock condition and hence needs to be improved.

Structural Analysis for the Conceptual Design of a High Level Radioactive Waste Repository in a Deep Deposit (심지층 고준위 방사성 폐기물 처분장의 개념설계를 위한 구조적 안정성 해석)

  • 권상기;장근무;강철형
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.102-113
    • /
    • 1999
  • Two-dimensional and three-dimensional DEM programs, UDEC and 3DEC, were used to investigate the mechanical stability of the conceptual design of deposition drift and deposition holes constructed in a crystalline rock mass. From the simulations, the influence of discontinuities, the number of deposition holes, and deposition hole interval on the stability of deposition drift and deposition holes could be determined. From the two-dimensional and three-dimensional analysis. it was concluded that three-dimensional analysis should be carried 7ut fur deriving reliable conclusions. Even though the deposition hole interval changed from 8 m to 3 m, which did not damage the mechanical stability of the deposition drift.

  • PDF

Effect of shale or mica schist on slope stability (셰일 및 운모편암의 사면안전성에 미치는 영향)

  • Lee, Byung-Joo;Shin, Hee-Soon;SunWoo, Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1-11
    • /
    • 2006
  • To be design the slope, the area distributed the shale or mica schist which was metamorphosed by shale must carefully consider the stability. The shale has the detrital materials of which the grain size are 1/256mm and fissility. As the reason the slope of shale is always unstable by bedding slip and fissility but also the joint and fault. Mica schist is also another unstable rock for slope by schistosity, cleavage, axial plane of a fold etc. In general shale and mica schist contain the swelling clay minerals such as smectite, vermiculite and montmorillonite. These minerals make the slope unstable. At OO tunnel construction area for the rail way of the Kyungbu high speed train, the slope of mica schist is very unstable by the distribution phenomena of the discontinuous plane such as joints which are 1-5cm spacing and thrust and strike-slip fault. By the drilling core of this area, most RQD have 0-20%.

  • PDF

Numerical Studies of Subsidence and Hydraulic Conductivity Enhancement Due to Underground Excavation (지하 굴착에 의한 침하와 수리전도도 증가에 관한 수치해석적 연구)

  • 윤용균
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.387-394
    • /
    • 2000
  • This is study investigates the changes of subsidence and hydraulic conductivity by underground mining Coupling between post-mining induced strains and strain-dependent hydraulic conductivities is obtained by idealizing a jointed rock mass as an equivalent porous medium in which the hydraulic conductivity of a single joint is defined through parallel plate description. Results indicate that post-mining hydraulic conductivities are directly related to the strain field occurred by subsidence induced deformation. Maximum subsidence and hydraulic conductivity values increase as a panel width does widen. Joint spacing has an effect on the intensity of the changes in hydraulic conductivity.

  • PDF

A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow (횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구)

  • Lee, Gi-Baek;Son, Jeong-Ho;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).

Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy (생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

Effects of the Distance between Houses on the Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 동간거리가 풍력계수에 미치는 영향)

  • 이현우;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.76-85
    • /
    • 1993
  • The purpose of this study was to analyze the wind force distribution on the two single-span arched plastic house depending upon the house spacing and wind direction, which may provide the fundamental criteria for the structural design. In order to specify the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients and the drag force coefficients were estimated from the wind tunnel test data. The results obtained are as follows : 1. At the wind direction of 90$^{\circ}$, there was a typical span interval at which the maximum negative pressure was occured at the edge of the inside walls. 2. In the consideration of wind loads, the wind force coefficients estimated from independent single-span arched plastic house should not be directly applied to the structural design on the double houses separated. 3. The average maximum negative wind force on the inside walls was occured at the wind direction of 90$^{\circ}$, and the variations depending on the span intervals was not significant. 4. The average maximum drag force was occured at the wind direction of 300, and the magnitude of drag force was more significant at the first house. As the distance between two houses was increased, the drag force was slightly increased for every wind direction.

  • PDF