터널 굴착 시 정확한 암반 분류는 적합한 지보패턴을 설치하는 데 도움을 준다. 암반의 분류를 위해 주로 RMR (Rock Mass Ration)과 Q값을 산정하여 수행되며, 페이스 매핑(face mapping)을 바탕으로 산정된다. 점보드릴 및 프로브드릴의 기계 데이터을 활용하거나 딥러닝을 활용한 굴착면 사진 분석 등의 방법이 암반등급 분류를 예측하기 위해 사용되고 있으나, 분석 시 오랜 시간이 소요되거나, 굴착면 전방의 암반등급을 파악할 수 없다는 점에서 한계를 갖는다. 본 연구에서는 순환인공신경망(Recurrent neural network, RNN)을 활용하여 굴착면 전방의 Q값을 예측하는 방법을 개발하였고 페이스 매핑으로부터 획득한 Q값과 비교/검증하였다. 4,600여개의 굴착면 데이터 중 70%를 학습에 활용하였고, 나머지 30%는 검증에 사용하였다. 학습의 횟수와 학습에 활용한 이전굴착면의 개수를 변경하여 학습을 수행하였다. 예측된 Q값과 실제 Q값의 유사도는 RMSE (root mean square error)를 기준으로 비교하였다. 현재 굴착면과 바로 직전의 굴착면의 Q값을 활용하여 600회 학습하여 예측한 Q값의 RMSE값이 가장 작은 것을 확인하였다. 본 연구의 결과는 학습에 사용한 데이터 값 등이 변화하는 경우 변화할 수 있으나 터널에서의 이전 지반상태가 앞으로의 지반상태에 영향을 미치는 시스템을 이해하고, 이를 통해 터널 굴착면 전방의 Q값의 예측이 가능할 것으로 판단된다.
우리나라는 2016년 경주 지진과 2017년 포항 지진 이후 지진 재해 방지 대책의 필요성이 증가하고 있으며, 지진 피해 정량화를 위해 신뢰성 있는 지진 재해도 해석 기법과 지반운동 모델이 요구된다. 최근 심층 지하 시설에 대한 수요가 증가하고 있다. 이에 따라 지하 암반층에서의 지진 재해 정량화 기법의 정확성 확보가 필요하다. 본 연구에서는 국내 시추공 관측소에서 계측된 지반운동 자료를 활용하여 지하 암반층에서의 지반운동을 예측할 수 있는 모델을 제안하였다. 스펙트럴 가속도의 0.01~10초 주기 중 17개를 대상으로 경험적 기법 중 회귀분석을 적용하여 지반운동 모델을 개발하였다. 지반운동 모델의 예측 성능을 평가 및 개선하기 위해 잔차 분석을 수행하고, 보정 인자를 모델식에 추가하였다. 제안된 모델을 적용하였을 때 잔차의 구간 평균이 0에 근접하였고, 기존 국외 모델들과 유사한 종합 잔차의 표준편차를 확인함으로써 제안된 모델의 신뢰성을 확인하였다.
Investigating damage potential of the railway infrastructure requires either large amount of case histories or in-depth numerical analyses, or both for which large amounts of effort and time are necessary to accomplish thoroughly. Rather than performing comprehensive studies for each damage case, in this study we collect and analyze a case history of the high-speed railway system damaged by the 2004 M6.6 Niigata Chuetsu earthquake for the development of the seismic fragility curve. The development processes are: 1) slice the railway system as 200 m segments and assigned damage levels and intensity measures (IMs) to each segment; 2) calculate probability of damage for a given IM; 3) estimate fragility curves using the maximum likelihood estimation regression method. Among IMs considered for fragility curves, spectral acceleration at 3 second period has the most prediction power for the probability of damage occurrence. Also, viaduct-type structure provides less scattered probability data points resulting in the best-fitted fragility curve, but for the tunnel-type structure data are poorly scattered for which fragility curve fitted is not meaningful. For validation purpose fragility curves developed are applied to the 2016 M7.0 Kumamoto earthquake case history by which another high-speed railway system was damaged. The number of actual damaged segments by the 2016 event is 25, and the number of equivalent damaged segments predicted using fragility curve is 22.21. Both numbers are very similar indicating that the developed fragility curve fits well to the Kumamoto region. Comparing with railway fragility curves from HAZUS, we found that HAZUS fragility curves are more conservative.
$CO_2$를 지중저장하는 과정에서 유체압력의 증가로 인한 단층 활성화는 저장영역의 기밀성 유지에 중대한 영향을 미치며, 상황에 따라 저장기능의 회복 또는 저장중인 $CO_2$의 처리 문제 등으로 확대될 수 있다. 따라서 현지조사 결과의 불확실성을 최소화하고 이를 토대로 부지 선정과 주입압력 결정 단계에서 실제 조건에 가까운 모델링을 수행하여 저장영역 내 단층의 안정성과 $CO_2$ 누출 가능성을 평가하여야 한다. 본 연구에서는 이와 관련된 기존 연구 결과들을 살펴봄으로써 연구 동향 및 연구 방법에 대한 정보를 제공하고자 하였다. 먼저 인위적으로 지반에 주입된 유체 또는 자연 생성되어 응집되어 있던 $CO_2$에 의해 지진활동이 일어났던 사례들을 조사하였으며, 현지응력의 크기 및 방향, 단층 및 유체압력 분포 자료를 획득하는 방법에 대해 살펴보았다. 그리고 단층 활성화 가능성 평가 및 지진활동 시 진동 크기 추정, 활성화에 따른 $CO_2$ 누출 모델링 관련 연구 사례를 정리하였다.
폐광지역의 침하발생 메커니즘 및 영향범위는 현장의 지반조건, 지압분포, 채굴적의 기하학적인 조건, 상부 구조물의 하중 조건 등에 따라 달라지므로 이를 예측하기는 매우 어렵다. 또한 지질 및 지반 상태, 탄층의 발달 상태, 채굴방법 등이 채굴현장마다 다르므로 기존의 보강대책을 그대로 적용하는 데에는 한계가 있다. 본 연구에서는 국내 폐광지역에 대한 합리적인 보강대책 수립을 위해 광역 채굴현황조사를 바탕으로 채굴적의 분포를 파악하고, 대심도 시추조사, 탄성파 토모그래피, 시추공 영상촬영 등의 상세 지반조사를 수행하여 석탄층의 분포현황과 암반이완상태를 파악하였다. 이를 토대로 지반침하이론에 의해 침하발생 유형을 예측하고 지반침하량을 산정하였다. 또한, 연구대상 지역의 침하발생 메커니즘을 분석하였으며, 기존 폐광지역 보강사례를 분석하여 각 침하원인별로 대상지역의 지반특성에 부합되는 지반 및 구조물기초에 대한 보강대책을 수립하였다.
전단파 속도는 내진설계시 중요한 설계인자이나 지반조사의 목적으로는 흔히 경제적, 시간적 제약 등으로 시험을 통한 측정이 널리 이루어지지 않고 있다. 본 연구에서는 인공신경망 기법을 이용하여 가장 일반적인 현장 지반조사시험인 표준관입시험 결과를 바탕으로 사질토 지반에서의 전단파 속도를 예측하는 연구를 수행하였다. 650개 데이터 세트를 이용해 표준관입시험 저항치 $N_{60}$, 함수비, 세립분함량, 비중을 입력변수로 하여 전단파속도를 추정하는 인공신경망 모델을 구축하고 입력변수별 전단파속도에 미치는 영향을 민감도 해석을 통해 조사하였다. 그리고, 기존의 국내 외 7개의 표준관입시험을 이용한 전단파속도 예측 경험식들과 인공신경망에 의한 결과를 비교하였다. 민감도 분석결과 표준관입시험 저항치의 영향이 월등히 큰 것으로 나타났으며, 모델효율계수와 평균제곱근오차를 사용하여 기존의 경험식들과 인공신경망 모델의 예측 능력을 비교한 결과 인공신경망 모델의 예측 결과가 가장 좋은 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.