• Title/Summary/Keyword: Tunnel Management System

Search Result 185, Processing Time 0.024 seconds

Development of Simulation Program of Vehicle Thermal Managements System (차량용 열제어 관리 시스템의 성능 시뮬레이션 프로그램 개발)

  • Bae, Suk-Jung;Heo, Hyung-Seok;Kim, Hyung-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.345-348
    • /
    • 2008
  • The computer-aided performance simulation can reduce periods for development of products and cut down on the cost comparing with former trial-and-error procedures. This study has developed a simulation program for a vehicle thermal management system integrating an engine cooling system and an air conditioning system considering interactions and arrangement of air side heat exchangers such as power steering oil cooler, air-cooled transmission oil cooler, condenser, and radiator. The program may be also used for the system performance analysis according to the configuration of the engine coolant side heat exchangers such as water-cooled transmission oil cooler, EGR cooler, and heater core. Experiments utilizing an environmental wind tunnel has been conducted to assess the performance of the system according to the arrangement of air side heat exchangers. Some modification of the coolant loop layout can enhance the heat core performance up to 7% according to the results of the simulations.

  • PDF

Case Studies on Applications of Convergence Measurement Systems at the Stages of Tunnel Construction and Maintenance (터널 시공 및 유지관리 단계 내공변위 계측시스템 적용사례 연구)

  • Lee, Dae-Hyuck;Han, Il-Yeong;Kim, Ki-Sun;Jin, Suk-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.59-69
    • /
    • 2000
  • Three-dimensional total station system which integrated the instrument with Target Pin and TEMS 3D software developed by SKEC R&D center was applied to a tunnel excavation for monitoring of convergence and crown settlement. The efficiency of the system was proved as the result in the aspects of exact monitoring and prediction of rock conditions ahead of the face. To monitor the behavior of tunnel lining at the maintenance stage, DOCS system was applied to the subway tunnel section. Such many effects as the vibration of sensors, verification of the system efficiency, the effect of test trains operation, the variation of temperature and the effect of high voltage was checked. Thus the management scheme for tunnel maintenance was laid out as a proposal.

  • PDF

Ground Test and Evaluation of a Flight Control Systemfor Unmanned Aerial Vehicles

  • Suk, Jin-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • UAV(Unmanned Aerial Vehicle) has become one of the most popularmilitary/commercial aerial robots in the new millennium. In spite of all theadvantages that UAVs inherently have, it is not an easv job to develop a UAVbecause it requires very systematic and complete approaches in full developmentenvelop. The ground test and evaluation phase has the utmost importance in thesense that a well-developed system can be best verified on the ground. In addition,many of the aircraft crashes in the flight tests were resulted from the incompletedevelopment procedure. In this research, a verification procedure of the wholeairbome integrated system was conducted including the flight management system.An airbome flight control computer(FCC) senses the extemal environment from thepehpheral devices and sends the control signal to the actuating system using theassigned control logic and flight test strategy. A ground test station controls themission during the test while the downlink data are transferred from the flightmanagement computer using the serial communication interface. The pilot controlbox also applies additional manual actuating commands. The whole system wastested/verified on the wind-tunnel system, which gave a good pitch controlperformance with a preUspecified flight test procedure. The ground test systemguarantees the performance of fundamental functions of airbome electronic systemfor the future flight tests.

Development of An Internet-Based Tunnel Construction Risk Management System (Internet 기반의 터널 시공 위험도 관리 시스템 개발)

  • 유충식;김재훈;박영진;유정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.679-686
    • /
    • 2002
  • A substantial portion of the cost of a tunnelling project in urban environments is, therefore, devoted to prevent ground movement. Therefore, prediction of ground movements and assessment of risk of damage to adjacent buildings has become an essential part of the planning, design, and construction of a tunnelling project in the urban environments. An internet-based tunnelling-induced ground movements and building damage assessment system (IT-TURIMS) was developed and implemented to Daegu Metro Subway Line tunnel construction project in Korea. This paper describes the concept and implementation of IT-TURIMS. Practical significance of tunnelling risk assessment is also discussed.

  • PDF

Experimental Study on Calculation of Critical Velocity in Accordance with Gradient of a Road Tunnel at Fire (도로터널 화재시 경사도에 따른 임계풍속산정에 관한 실험적 연구)

  • Kim, Jong-Yoon;Seo, Tae-Beom;Rie, Dong-Ho;Lim, Kyung-Bum;Yoo, Ji-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.1-5
    • /
    • 2006
  • This study provides a basic data necessary to design a facility of smoke management after calculating the critical velocity of the gradient scale model tunnel and reviewing its adequacy to establish an optimum disaster prevention system for a road tunnel at fire. The experiment is carried out by using Froude scaling to a scale model which is about 1/29 as big as the real tunnel, and its critical velocity calculation is calculated to the 0-2% gradient of the tunnel. The result shows that the higher the gradient is, the stronger the critical velocity, but that it doesn't affect the critical velocity so much when the gradient is less 2%. In addition, this result is studied in comparison with the results done by other researchers to review the adequacy of the critical velocity.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

A study on establishment of measurement and analysis frequency of maintenance monitoring in tunnel (터널 유지관리계측의 측정 및 분석주기 설정 연구)

  • Woo, Jong-Tae;Lee, Kang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.2
    • /
    • pp.117-129
    • /
    • 2012
  • In this study, research was performed to establish the measurement and frequency of analysis for maintenance monitoring by investigation of tunnel maintenance monitoring system in the tunnel which was installed in the Seoul metro line 5, 7 and 8, using that the domestic and foreign application case, results of analyzed maintenance monitoring in the domestic tunnel and legal safety management standard of the facility. The results of the monitoring management about analysis frequency to the present are considered that the problem about measuring frequency does not occur. According to the analysis results of the maintenance monitoring which are located on the 5, 6th subway line, they are analyzed that the stress of concrete lining and reinforced bar are converged gradually after 45 months. Therefore Monitoring of measurement and analysis frequency is conduct more often within about 4 years after the measuring instrument installation. Four years later, slowing the frequency of measurement is considered reasonable.

Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel (도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.

A Study on Analysis and Control of Circumvent Connection to the Private Network of Corporation (기업 사설 네트워크 우회 접속 분석 및 통제 대책 연구)

  • Lee, Chul-Won;Kim, Huy-Kang;Lim, Jong-In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.6
    • /
    • pp.183-194
    • /
    • 2010
  • A company's private network protected by a firewall and NAT(Network Address Translation) is not accessible directly through an external internet. However, as Reverse Connection technology used by NetCat extends to the technologies such as SSH Tunnel or HTTP Tunnel, now anyone can easily access a private network of corporation protected by a firewall and NAT. Furthermore, while these kinds of technologies are commercially stretching out to various services such as a remote control and HTTP Tunnel, security managers in a company or general users are confused under the circumstances of inner or outer regulation which is not allowed to access to an internal system with a remote control. What is more serious is to make a covert channel invading a company's private network through a malicious code and all that technologies. By the way, what matters is that a given security system such as a firewall cannot shield from these perceived dangers. So, we analyze the indirect access of technological methods and the status quo about a company's internal network and find a solution to get rid of the related dangers.

TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application (막장전방 예측기법에 근거한 TBM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Park, Jeongjun;Lee, Kang-Hyun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • When utilizing a Tunnel Boring Machine (TBM) for tunnelling work, unexpected ground conditions can be encountered that are not predicted in the design stage. These include fractured zones or mixed ground conditions that are likely to reduce the stability of TBM excavation, and result in considerable economic losses such as construction delays or increases in costs. Minimizing these potential risks during tunnel construction is therefore a crucial issue in any mechanized tunneling project. This paper proposed the potential risk events that may occur due to risky ground conditions. A resistivity survey is utilized to predict the risky ground conditions ahead of the tunnel face during construction. The potential risk events are then evaluated based on their occurrence probability and impact. A TBM risk management system that can suggest proper solution methods (measures) for potential risk events is also developed. Multi-Criterion Decision Making (MCDM) is utilized to determine the optimal solution method (optimal measure) to handle risk events. Lastly, an actual construction site, at which there was a risk event during Earth Pressure-Balance (EPB) Shield TBM construction, is analyzed to verify the efficacy of the proposed system.