• Title/Summary/Keyword: Tunnel Inspection and Maintenance System

Search Result 39, Processing Time 0.036 seconds

Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor (광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발)

  • Lho, Byeong-Cheol;Kim , Jong-Woo;Kang , Suck-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.160-166
    • /
    • 2006
  • Optical Fiber Bragg Grating sensor has a good performance to measure microscopic displacement which can measure strain of lining concrete and cylindrical structure like high intensity containment building and it can present many advantages like a corrosion resistance from the durability point of view. Then it can measure plane geometrical displacement of cylindrical structures with two-way displacement FBG sensor module. According to the test result, measurement of FBG sensor is better performance than other electric sensor system and 2D-level measurement. As a test result, Resolution of the two-way displacement sensor module with FBG sensors are more 10 times than other LVDT or 2D surveying.

A Study on the Performance Evaluation System of Conventional(ASSM) Road Tunnels (재래식(ASSM) 도로터널의 성능평가 체계 연구)

  • Park, Kwang-Rim;Chung, Jee-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.27-36
    • /
    • 2018
  • Although the current evaluation system has been revised four times since it was revised in 1996, it is insufficient to utilize it as a basis for predicting the performance degradation from the long-term viewpoint and prioritization decision for the budget input due to the evaluation system limited to securing the structural safety. Therefore, this study proposes a new evaluation system suitable for the performance evaluation of conventional (ASSM) tunnels among the various types of existing road tunnels using Delphi technique and AHP technique. Since the existing evaluation systems and evaluation items in domestic and overseas are limited in scope of evaluation criteria, the survey was conducted in conjunction with closed questionnaires on existing items and open questionnaires for eliciting new items. The validity of the questionnaire results were verified and the performance evaluation factors suitable for conventional (ASSM) tunnels were derived. After calculating weighted value of the derived evaluation item using AHP technique, a new evaluation system is proposed to meet the characteristics of the ASSM tunnel, so that they can be used as reference materials for revising and supplementing detailed guidelines of performance evaluation in the future.

The Analysis of the Important Problems on Designing and Constructing Earth Retaining Structures (지반굴착 흙막이 구조물 설계 및 시공시 중요문제점 분석)

  • Lee, Song;Kim, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • Earth retaining structure is constructed structure in order to construct a multistoried building, the subway, a subterranean downtown for effective use and obtainments of the limited ground. Recently, many kinds of research have been actively developed for a standardization and a database on designing and constructing of bridge, tunnel, road. With the works of database construction of that, many kinds of data with respect to statistics is cumulated. However, Database work of designed and constructed earth retaining structure in the construction field is wholly lacking and lagged behind in the works of database construction. This paper suggested classification system on indication data in connection with designing and constructing earth retaining structures a hundred fields. On the basis of that, code work with classification system was practised and DB program of indication data in connection with designing and constructing earth retaining structures was developed.

The Experimental Study of the Ultimate Behavior of an Avalanche Tunnel Corner Rigid Joint Composited with a Centrifugal Formed Beam (초고강도 원심성형 보가 합성된 피암터널 우각부의 극한거동에 관한 실험연구)

  • Lee, Doo-Sung;Kim, Sung-Jin;Kim, Jeong-Hoi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.128-138
    • /
    • 2022
  • In this study, in order to apply ultra-high-strength concrete beams of 100 MPa or more manufactured by centrifugal molding as the superstructure of the avalanche tunnel, the purpose is to verify the structural safety of the corner rigid joint in which the centrifugal molded beam is integrated with the substructure, which is the negative moment area. A full-size specimen was manufactured, and loading tests and analysis studies were performed. In order to expect the same effect that the maximum moment occurs in the corner joint part of the upper slab end when the standard model of the avalanche tunnel is designed with a load combination according to the specification, a modified cantilever type structural model specimen was manufactured and the corner rigid joint was fixedly connected. A study was performed to determine the performance of the method and the optimal connection construction method. The test results demonstrated that the proposed connection system outperforms others. Despite having differences in joint connection construction type, stable flexural behavior was shown in all the tested specimens. The proposed method also outperformed the behavior of centrifugally formed beams and upper slabs. The behavior of the corner rigid joint analysis model according to the F.E. analysis showed slightly greater stiffness compared to the results of the experiment, but the overall behavior was almost similar. Therefore, there is no structural problem in the construction of the corner rigid joint between the centrifugally formed beam and the wall developed in this study.

A Study on Condition Assessment of the General National Road Bridge Deck (일반국도상 교량 바닥판의 상태 현황분석 연구)

  • Oh, Kwang Chin;Lee, Jun Gu;Shin, Ju Yeoul;Chang, Buhm Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.93-101
    • /
    • 2012
  • Bridge deck has a role in a comfortable and safe passage of vehicles. At the same time, it preserves upper structure against the abrasion and shearing due to impact of traffic loads in bridges or has a role to protect the plate from off adverse effect of climatic process as rain, chemicals. Currently, the total number of inspected bridges is 6,248 in the general national road and to maintain effectively, Introduction of GPR system mounted in the vehicle has been considered. In this research, the comparison and analysis of bridge deck condition on general national road has been performed with major variations of superstructure type, span lengths, located region and ages by using 'the current status of road bridge and tunnel' that is provided by MLTM(Ministry of Land, Transport and Maritime Affairs). As a result, Condition assessment grade, superstructure type, age and length were derived as a major factor to determine priority for the condition assessment.

A Study on the Development and the Practical Approach for Repair Method of RC Structures Subjected to the Chemical Attack (화학적 침식을 받은 콘크리트구조물의 보수기술 개발과 실용화연구)

  • Moon, Han-Young;Shin, Dong-Gu;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.155-162
    • /
    • 2005
  • This paper presents an invetigation into the cause of deterioration of wet surrounding RC structures subjected to checmical attacks such as sewage. The antibacterial-reforming agent is developed after determining the permeability of the RC structure. After application of the anitbacterial-reforming agent through SEM, the permeability, compressive strength properties and the micro-structure of the concrete were evaluated for durability. In addition, the antibacterial-reforming agent was combined with a protective coating for the wet surrounding RC structure and evaluated for durability. The combined effect of the antibacterial-reforming agent and the protective coating were evaluated in field tests in both sewer system and tunnel sites.

Training a semantic segmentation model for cracks in the concrete lining of tunnel (터널 콘크리트 라이닝 균열 분석을 위한 의미론적 분할 모델 학습)

  • Ham, Sangwoo;Bae, Soohyeon;Kim, Hwiyoung;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.549-558
    • /
    • 2021
  • In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.

An Experimental Study on the Fire Monitoring System for Tunnel Using SMA and Fiber Optic Cable (형상기억합금과 광케이블을 이용한 터널의 화재감지 시스템 개발에 관한 실험적 연구)

  • Hwang, Ji-Hyun;Park, Ki-Tae;Lee, Kyu-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.128-134
    • /
    • 2014
  • Recently, design and construction of street tunnels tend to focus on cost reduction and preservation of nature. Accordingly, research is actively being carried out to quickly detect fires when they occur in tunnels, which have partially closed structures. Among such research, fire detection methods using optical fiber sensors have a wide bandwidth and fast transmission speed, while using light as a medium. Therefore, it does not receive electrical interference and there is almost no loss of information during transmission, while also having little noise as well. In relation to this, a fire monitoring system that can accurately detect the location of fires in real time using shape memory alloy and optical cables was developed in this study. In order to verify the developed method, light loss measurement test was conducted according to indoor temperature changes, while also conducting fire simulation tests by installing test beds in common underground zones with different external environments of temperature and distance. Upon carrying out experiments, the fire monitoring system developed in this study was found to be able to detect fires in long distance sections in real time.

A Study on Evaluation System of Track Support Stiffness for Concrete Tracks (콘크리트궤도의 궤도지지강성 평가시스템에 관한 연구)

  • Choi, Jung-Youl;Kim, Man-Hwa;Kim, Hyun-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • A conventional elastic material replacement and performance evaluation are very complicated and time-consuming, and it is difficult to know when to replace the elastic material in advance. By comparing with the product limit and the functional limit, the necessity of elastic material replacement and the improvement of track support stiffness according to replacement can be immediately demonstrated based on experimental data. Using an evaluation system of track support stiffness, the performance evaluation data for elastic materials obtained through field tests using software for track support stiffness is integrated and managed on the administrator's computer. Therefore, the replacement plan is established and maintenance history is managed by identifying the replacement time and location of elastic materials. It is possible to evaluate the performance and condition of the elastic material at the various points during the working time of the track inspection and the track performance (track support stiffness) and durability of the elastic material (aging level, spring stiffness variation rate, etc.) at the operation condition. The elastic material could be replaced timely, and the deterioration of the elastic material can be continuously monitored.