• 제목/요약/키워드: Tunnel Displacement

검색결과 539건 처리시간 0.024초

방콕의 터널공사 - 두 개의 사례연구 (Tunnelling in Bangkok - Two Case Studies)

  • 테브라스카 완차이;조계춘
    • 한국터널지하공간학회 논문집
    • /
    • 제7권2호
    • /
    • pp.153-163
    • /
    • 2005
  • 본 논문에서는 타이 방콕의 지하철 터널현장과 홍수방지용 터널현장에 대한 사례연구를 수행하였다. 첫 번째 사례연구는 복식터널인 방콕 MRT 지하철 현장으로써 터널연장이 대략 20 km이고 18개의 정거장으로 구성되어져 있다. 터널은 지표면으로부터 15~20m 깊이에 위치하는 첫 번째 단단한 실트성 점토층에 위치한다. 현장계측으로부터 얻어진 굴착에 의한 지반의 변위거동이 제시되었다. 평면변형율 유한요소해석을 통하여 역해석을 수행하였으며, 이로부터 나온 결과는 현장에서 계측된 결과와 일치하였다. 유한요소해석으로부터 산정된 전단변형율은 0.1~1.0%의 범위내에 존재하였으며, 자동보링 프래셔미터 시험으로부터 나온 결과와 비슷하였다. 한편, 두 번째 사례연구는 지하 장애물 밑으로 관통하는 EPB타입의 터널공사 현장과 관련이 있다. Premprachakorn 홍수방지용 터널은 장마시기에 홍수를 Choapraya강으로 전환하기 위한 지름길의 터널이다. 터널은 대략 지하 20~24m에 위치한 매우 단단한 실트성 점토층에 EPB타입 쉴드터널공법에 의하여 건설되었다. 터널이 이미 존재하고 있는 방콕의 주된 용수터널과 다리의 기초 아래에서 시공되는 동안에 현장계측이 수행되었으며, 이 계측결과를 유한요소해석으로부터 산정된 결과와 비교하였다. 또한 손상평가를 예측하기 위한 수단으로 방지 리스크 포텐셜 방법을 제시하고 논의하였다.

  • PDF

역해석기법을 통한 NATM 터널의 안정성 평가 (Stability Estimation of NATM Tunnel due to Excavation using Back Analysis)

  • 이재호;김영수;김광일;박진규;박시현;최칠용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.494-504
    • /
    • 2008
  • Successful design, construction and maintenance of NATM tunnel demands prediction, control, stability estimation and monitoring of surface settlement, gradient and ground displacement with high accuracy. Back analysis using measured data and forward analysis have been and are indispensable tools to achieve this goal. Sakurai provided the hazard warning levels for assessing the stability of tunnels using the relation of critical strain and apparent Young's modulus. This paper performed the estimation of tunnel stability on construction. Firstly, the apparent Young's modulus concept and back analysis method is introduced for the assessment of tunnel safety during excavation a brief framework. Secondly, this paper deals with case study using "Apparent Young's modulus" and "Back analysis" for the purpose of estimating the stability of NATM tunnel in Korea. Finally, a general method that can be estimated the tunnel stability discussed by a flow chart.

  • PDF

Prediction methods on tunnel-excavation induced surface settlement around adjacent building

  • Ding, Zhi;Wei, Xin-jiang;Wei, Gang
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.185-195
    • /
    • 2017
  • With the rapid development of urban underground traffic, the study of soil deformation induced by subway tunnel construction and its settlement prediction are gradually of general concern in engineering circles. The law of soil displacement caused by shield tunnel construction of adjacent buildings is analyzed in this paper. The author holds that ground surface settlement based on the Gauss curve or Peck formula induced by tunnel excavation of adjacent buildings is not reasonable. Integrating existing research accomplishments, the paper proposed that surface settlement presents cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics when the tunnel is respectively under buildings, within the scope of the disturbance and outside the scope of the disturbance. Calculation formulas and parameters on cork distribution curve and skewed distribution curve were put forward. The numerical simulation, experimental comparison and model test analysis show that it is reasonable for surface settlement to present cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics within a certain range. The research findings can be used to make effective prediction of ground surface settlement caused by tunnel construction of adjacent buildings, and to provide theoretical guidance for the design and shield tunnelling.

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

터널 막장폐합비에 따른 지반 응력 및 침하량에 대한 연구 (A study on stresses and displacements of the ground according to the closure ratio of tunnel face during tunnel excavation)

  • 김상환;민병헌
    • 한국터널지하공간학회 논문집
    • /
    • 제12권5호
    • /
    • pp.369-378
    • /
    • 2010
  • 본 논문은 터널굴착 시 야기되는 지반의 응력과 지표면의 침하량을 감소시키기 위한 터널막장 폐합시키는 기법에 대한 연구이다. 이 연구를 수행하기 위하여 실내모형실험과 수치해석적 분석을 실시하였다. 실내모형실험에 있어서는 터널막장의 폐합비, 터널깊이 그리고 터널굴착장에 따른 지반의 거동을 실험하였다. 이틀 모형실험 결과를 검증하기 위하여 3차원 수치해석을 실시하였으며 서로의 결과들을 비교 분석하였다. 그 결과 막장 폐합비가 작아질수록 터널막장과 지반침하에 안정성은 저하되는 것으로 나타났으며 막장 폐합비가 80% 이상일 경우에는 막장 안정성에 큰 문제가 없는 것으로 나타났다. 이러한 연구결과는 향후 경제적인 터널막장폐합시스템을 개발하는데 매우 유용 할 것으로 가대된다.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

굴착 진행과정을 고려한 터널 단면의 점탄성 및 탄소성 응력해석

  • 이연규;장현곤;이정인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.152-165
    • /
    • 1991
  • Elasto-plastic and Visco-elastic sytress analyses were conducted for standard cross-section of subway tunnel in Seoul . Considering the procedure of excavation and reinforcement, excavated region was divided to multiple elements. And the progress of tunnel is simulated to be the removal of a series of layerd elements by means of diminishing the stiffness of the portion progressively. Another method is to be free of stress due to excavation instead of stiffness. In the analysis multiple element method was conducted with ADINA program, the stiffness removal method was adopted . For the same model, stress release method was carried out with Visco-Elastic Analysis program developed in Rock mechanics laboratory, Seoul National University(SNU-VBA) . When upper tunnel excavated, displacements in roof were same for two results, but when bottom tunnel removed completely , displacement changes of rock in the stress release method exhibited very small amount compared with stiffness removal method.

  • PDF

터널 굴착에 의한 지중 매설관의 손상평가 (Damage Assessment of Buried Pipelines Due to Tunnelling)

  • 유충식;윤효석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.471-478
    • /
    • 2000
  • Ground movements are inevitably caused by tunnel construction in soft ground. In the design and construction of tunnels in urban areas, the potential effects of buried pipelines by ground movements are one of the important design cosiderations. Generally, the most common modes of failure of buried pipelines due to ground movements are tensile fracture of main pipelines, rotation angle and pull-out displacement at joints. In the parametric study, a wide range of conditions were considered, including tunnel diameter(D), tunnel depth(Z$\sub$0/), volume loss(V$\sub$ι/) and inflection point(i). Based on this results, design charts, which are applicable to assess potential damage of buried pipelines associated ground movements due to tunnelling, are developed.

  • PDF

응답변위법에 의한 터널의 내진해석 (Seismic Analysis of Tunnel Response by Response Displacement Method)

  • 윤세웅;신종호;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.457-462
    • /
    • 2009
  • In this study, seismic analysis is performed using simplified method, analytical solution and numerical analysis based on one-dimensional seismic site response analysis. The results show that analytical solution of tunnel response is predicted more conservative than numerical solution. And simplified method is not appropriate for seismic analysis of tunnel response. In addition, it is reasonable to determine shear-modulus reduction ratio performing seismic site response analysis to consider ground nonlinear-behavior.

  • PDF