• Title/Summary/Keyword: Tunnel Displacement

Search Result 536, Processing Time 0.03 seconds

A Study on the Mechanical Characteristics of Tunnel Structures and Ground Behavior by Synthetic Analysis Method with Tunnel Monitoring Results used (터널의 계측결과 종합분석에 의한 지반의 거동 및 터널 구조체의 역학적 특성 연구)

  • Woo, Jong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.115-124
    • /
    • 2003
  • In this study, the relationships between the displacement and stress of the tunnel using various analysis methods were compared with monitoring results carried out during construction and maintenance monitoring. The behavior of tunnel were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel lining. With the results of simplified monitoring observed in top heading and bench excavation tunnel, it is confirmed that the crown settlement is larger than the surface settlement. it is interesting to note that the crown settlement and the crown shotcrete lining stress are widely used monitoring items for the back analysis. It is analyzed that the residual water pressure applied in the drainage type tunnel is reasonable.

A Study on Joint by Two-Stage Excavation in Tunnel (2단계로 굴착되는 터널의 절리에 대한 연구)

  • Byun Gwang-Wook;An Joung-Hwan;Kim Dong-Gab;Lee Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.185-194
    • /
    • 2005
  • Recently, the surrounding rock mass is understood as the major support system for the tunnel constructed in the rock mass. Generally, the rock mass contains many discontinuity planes such as joints, and thus, the tunnel behavior in the rock mass is governed by the characteristics of the discontinuity planes. In this study, the behavior of tunnel in jointed rock mass is studied by model tests and numerical analyses. The results shows that the behavior of tunnel depends on the different initial stress conditions, in case that the tunnel is excavated in the ground without any joints. When a joint is located near the tunnel, the pound stress and displacement tend to increase between the tunnel and the joint.

Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand (인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

Influence of eccentric load and lateral earth pressure on the tunnel behavior (편토압 및 측압이 터널거동에 미치는 영향)

  • Ahn, Hyun-Ho;Suh, Byung-Wook;Kim, Dong-Hyun;Min, Dong-Ho;Lee, Sun-Bok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • Scaled model tests were performed to explore the influence of eccentric load and lateral earth pressure on tunnel behavior and their results were verified through numerical analyses. As a method for reducing the eccentric load acting on tunnel, an eccentric supporting system (ESS) was proposed and its applicability was investigated. Experimental results showed that displacement decreased overall and the load inducing initial cracks increased as the eccentric supporting system was applied. The maximum eccentric vertical load which impacted the stability of tunnel was also increased. The test results on the influence of lateral earth pressure on tunnel behavior showed that the general aspect of displacement and crack growth changed significantly depending on the coefficient of lateral earth pressure. In addition, the weak zone In view of stability varied as well.

  • PDF

Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis (수치해석에 의한 복개터널 라이닝의 변위거동)

  • Lee, Myung-Woog;Park, Byung-Soo;Jeon, Yong-Bae;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

A Study on Instrumentation Results Analysis Using Artificial Neural Network in Tunnel Area (인공신경망을 이용한 터널시공 시 계측결과 분석에 관한 연구)

  • Lee, Jong-Hwi;Han, Dong-Geun;Byun, Yo-Seph;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.21-31
    • /
    • 2010
  • Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to get it practically on considering various geography and geotechnical condition. So construction management of information concept is required to manage immediately on the field condition because it is very time-consuming to establish the countermeasure of underground reinforcement and the pattern change of Bo. Therefore, when construction is on tunnel area, examination of accurate safety and prediction of behavior is performed to overcomes the limit of predicting behavior by using Artificial Neural Network(ANN) in this study. Firstly, the field data was secured. Secondly, suitable structure was made on multi-layer perceptrons among the ANN. Thirdly, learning algorithm-propagated applies to ANN. The data for the learn of field application using ANN was used by considering impact factors, which influenced the behavior of tunnel, and performing credibility analysis. crown displacement, spring displacement, subsurfacement, and rock bolt axial force are predicted at the tunnel construction and on-site application was confirmed by using ANN from analyzing and comparing with measurement value of on-site. In this study, the data from Seoul Highway $\bigcirc\bigcirc$ tunnel section was applied to the ANN Theory, and the analysis on the investigate value and the reasoning for the value associated with field application was performed.

  • PDF

Prediction of fault zone ahead of tunnel face using x-Rs control chart analysis for crown settlement (천단변위의 x-Rs 관리도 분석을 이용한 터널 막장 전방 단층대 예측)

  • Yun, Hyun-Seok;Seo, Yong-Seok;Kim, Kwang-Yeom
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.361-372
    • /
    • 2014
  • A measurement of tunnel displacement plays an important role for stability analysis and prediction of possible fault zone ahead of tunnel face. In this study, we evaluated characteristics of tunnel behaviour due to the existence and orientation of fault zone based on 3-dimensional finite element numerical analysis. The crown settlement representing tunnel behaviour is acquired at 5 m away from tunnel face in combination with x-Rs control chart analysis based on statistics for trend line and L/C (longitudinal/crown displacement) ratio in order to propose risk management method for fault zone. As a result, x-Rs control chart analysis can enable to predict fault zone in terms of existence and orientation in tunnelling.

Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel (파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구)

  • Kim Chang-Yong;Kim Kwang-Yeom;Moon Hyun-Koo;Lee Seung-Do;Baek Seung-Han
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.218-231
    • /
    • 2006
  • Anisotropic/heterogeneous rock mass shows various deformation behavior types due to tunnelling because deformation behavior is largely controlled by the spacial characteristics of geological factors such as faults, joints and fractured zone in rock mass. In this paper 2-dimensional numerical analysis on the several influencing factors is performed considering fractured zone located near tunnel. This numerical analysis shows that deformation behavior of tunnel are very different according to the width and the location of fractured zone and supper method. However, 3-dimensional analysis is necessary to consider 3-dimensional geometrical characteristics sufficiently since discontinuity and fractured zone have 3-dimensional geometry. Also flexible design/construction guidelines for tunnelling are required to cope with uncertain ground condition and circumstance for technically safe and economic tunnel construction.

Section enlargement by reinforcement of shotcrete lining on the side wall of operating road tunnel (운영중인 도로터널의 측벽하부 숏크리트 보강에 의한 단면확대)

  • Kim, Dong-Gyou;Shin, Young-Wan;Shin, Young-Suk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.637-652
    • /
    • 2012
  • The protector with the shape of '${\sqcap}$' in cross section can be set up in the tunnel, which can be constructed for enlargement of cross section, to keep traffic flow in the tunnel. It is impossible to install the rockbolt in the side wall of tunnel due to a limited space between the protector and cutting surface of side wall. The objective of this study is to suggest the optimum thickness of shotcrete lining without rockbolt on the side wall and to evaluate the stability of tunnel enlarged. Numerical analysis was performed to evaluate the displacement at the center of tunnel, the convergence of tunnel, and the stress in shotcrete lining in 4-lane NATM road tunnel enlarged from 3-lane NATM road tunnel. The vertical displacement at the center of tunnel and the convergence of crown in the tunnel with rockbolt in the side wall were almost similar to those in the tunnel without rockbolt in the side wall. The convergence of bench/invert and the stress in shotcrete lining without rockbolt on the side wall were greater maximum 0.57 mm and 1,300 kN/$m^2$ than those with rockbolt in the side wall. The increased convergence and the stress in shotcrete lining can be reduced in incerasing of thickness of shotcrete lining about 20% (5 cm) of standard thickness, 25 cm, of shotcrete lining.

Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions

  • Chen, Li'ang;Pei, Weiwei;Yang, Yihong;Guo, Wanli
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-248
    • /
    • 2022
  • Nowadays, more and more subway tunnels were planed and constructed underneath the ground of urban cities to relieve the congested traffic. Potential damage may occur in existing tunnel if the new tunnel is constructed too close. So far, previous studies mainly focused on the tunnel-tunnel interactions with circular shape. The difference between circular and horseshoe shaped tunnel in terms of deformation mechanism is not fully investigated. In this study, three-dimensional numerical parametric studies were carried out to explore the effect of different tunnel shapes on the complicated tunnel-tunnel interaction problem. Parameters considered include volume loss, tunnel stiffness and relative density. It is found that the value of volume loss play the most important role in the multi-tunnel interactions. For a typical condition in this study, the maximum invert settlement and gradient along longitudinal direction of horseshoe shaped tunnel was 50% and 96% larger than those in circular case, respectively. This is because of the larger vertical soil displacement underneath existing tunnel. Due to the discontinuous hoop axial stress in horseshoe shaped tunnel, significant shear stress was mobilized around the axillary angles. This resulted in substantial bending moment at the bottom plate and side walls of horseshoe shaped tunnel. Consequently, vertical elongation and horizontal compression in circular existing tunnel were 45% and 33% smaller than those in horseshoe case (at monitored section X/D = 0), which in latter case was mainly attributed to the bending induced deflection. The radial deformation stiffness of circular tunnel is more sensitive to the Young's modulus compared with horseshoe shaped tunnel. This is because of that circular tunnel resisted the radial deformation mainly by its hoop axial stress while horseshoe shaped tunnel do so mainly by its flexural rigidity. In addition, the reduction of soil stiffness beneath the circular tunnel was larger than that in horseshoe shaped tunnel at each level of relative density, indicating that large portion of tunneling effect were undertaken by the ground itself in circular tunnel case.