• 제목/요약/키워드: Tunnel Displacement

Search Result 539, Processing Time 0.022 seconds

A Comparison of Barton-Bandis Joint Model and Mohr-Coulomb Joint Model for Tunnel Stability Analysis with DEM (개별요소법을 이용한 터널 안정성 해석에 있어 Barton-Bandis 절리 모델과 Mohr-Coulomb절리 모델의 비교)

  • 이성규;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • The joint model has influence on the results of discontinuum analysis. In this study the results of discontinuum analysis with Barton-Bandis joint model(BB model) and with Mohr-Coulomb joint model(MC model) are compared. The results of continuum analysis under the same condition are compared with the results of discontinuum analysis to investigate the behavior of rockmass around tunnel. The result of continuum analysis and that of discontinuum analysis with BB model show similar distribution of displacement and stress. On the other hand, the discontinuum analysis with MC model shows different displacement distribution and stress distribution. Moreover, the displacement and minor principal stress of the discontinuum analysis with MC model are smaller than those of continuum analysis, although the joints are explicitly considered in the discontinuum analysis. These results are originated from the limitation of MC model in simulating joint deformation behavior, especially the assumption of constant dilation jingle independent of it)int 7hear displacement.

  • PDF

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Hybrid Analysis of Displacement Behavior and Numerical Simulation on Tunnel Design (터널 변위 거동 및 수치 모의실험의 결합 해석)

  • Jeong, Yun-Young;Han, Heui-Soo;Lee, Jae-Ho
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • This study is focused on the analysis of tunnel behavior to estimate the stability on tunnel design. An estimation method was proposed as a hybrid consideration, which contains the displacement analysis by 3D numerical simulation, the maximum displacement obtained after field measurement, and an assessment of tunnel stability using a deformation analysis proposed by Sakurai(1988, 1997). The points of case study by Sakurai(1988, 1997) were replotted considering his analysis. From the new analysis of the tunnel case study, the trend line for analyzed points is analogized, which curve is divided into stable, unstable and failure zone. To evaluate the estimation method, a special shape of railway tunnel was selected, which are the Inchon international airport rail way connected to subway line 9 in Gimpo, Korea. The point s of upper and below track on the Inchon international airport rail way were satisfied to the stability of tunnel after reinforcing. Also the points shows the higher apparent Young's modulus, which resulted from improvement on shear strength by the micro silica grouting and the supporting of umbrella method. Therefore, if new analysis used, proper tunnel reinforcing method could be selected according to tunnel strain and geological property.

Back Analysis of Tunnel for multi-step Construction (시공 단계를 고려한 터널의 역해석에 관한 연구)

  • 김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.479-484
    • /
    • 2000
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design tunnel safely and economically. Therefore, the back analysis using the field measurements data is useful to evaluate the geotechnical parameter for tunnel. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. In this paper, to overcome uncertainty of field measurements, we performed the back analysis using the displacement data gained at each step of excavation and support.

  • PDF

A Study of Grouting Design Method in Tunnel Under Grorundwater (지하수 영향을 받는 터널에서의 막장전면그라우팅 설계기법에 관한 연구)

  • Ahn Sung-Yul;Ahn Kyung-Chul;Kang Se-Gu
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.117-128
    • /
    • 2005
  • This Paper present design parameters of grouting by reviewing several published equations and the results of coupled analysis considering the difference of permeability between soil and grouted zone. Also, the feasibility of couped analysis in the design of grouting is studied for seeping water quantity into tunnel, displacement of tunnel face, drawing down of groud water table, settlement of ground and stress of tunnel supports.

  • PDF

Behavior of a tunnel face reinforced with longitudinal pipes - laboratory investigation (실내실험에 의한 수평보강재로 보강된 터널막장의 거동)

  • Yoo, Chung-Sik;Yang, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.91-100
    • /
    • 2002
  • This paper presents the results of laboratory investigation on the deformation behavior of tunnel face reinforced with longitudinal pipes. A series of reduced-scale model tests was carried out to investigate the effect of reinforcement layout on the tunnel face axial displacement as well as the surface settlement. Among other things, the results of the model tests indicate that the axial displacement of tunnel face as well as the ground surface settlement can significantly be reduced by pre-reinforcing the tunnel face with longitudinal pipes, suggesting that the pre-reinforcing technique may effectively be used as a positive ground control method in the urban environments. Also illustrated is that the reinforcing effect is significantly influenced by the reinforcement layout. The implications of the findings from this study are discussed in a great detail.

  • PDF

The Effect of Cut-slope on Structural Behavior of Cut-and-Cover Tunnel (굴착경사가 개착식터널의 구조적거동에 미치는 영향에 관한 연구)

  • 유건선
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.245-255
    • /
    • 2001
  • Existing cut-and-cover tunnels are designed regardless of cut-slope under the assumption that the overburden weight of backfill soil acts on tunnel arch and the earth pressure at rest acts on tunnel walls. However, actual earth pressures acting on the tunnel lining depend on open-cut size composed of cut-slope and cut-width, and thus the tunnel lining shows a different structural behavior. This study investigated the effect of cut-slope on structural behavior of the cut-and-cover tunnel lining as follows; Firstly, a comprehensive numerical analysis method using FLAC2D code was used and verified by field measurements of tunnel profile. Secondly, based on the verified numerical analysis technique, earth pressure acting on the lining, and displacement and sectional force developed on the lining were estimated with various shapes of cut-slopes$30^{\circ}\;, 456{\circ},\; 60^{\circ},\; and\;75^{\circ}%). Numerical analysis results indicate that the steeper cut-slope shows the more displacement and moment of the tunnel lining.

  • PDF

Optimization of construction support scheme for foundation pits at zero distance to both sides of existing stations based on the pit corner effect

  • Tonghua Ling;Xing Wu;Fu Huang;Jian Xiao;Yiwei Sun;Wei Feng
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.381-395
    • /
    • 2024
  • With the wide application of urban subway tunnels, the foundation pits of new stations and existing subway tunnels are becoming increasingly close, and even zero-distance close-fitting construction has taken place. To optimize the construction support scheme, the existing tunnel's vertical displacement is theoretically analyzed using the two-stage analysis method to understand the action mechanism of the construction of zero-distance deep large foundation pits on both sides of the existing stations; a three-dimensional numerical calculation is also performed for further analysis. First, the additional stress field on the existing tunnel caused by the unloading of zero-distance foundation pits on both sides of the tunnel is derived based on the Mindlin stress solution of a semi-infinite elastic body under internal load. Then, considering the existing subway tunnel's joints, shear stiffness, and shear soil deformation effect, the tunnel is regarded as a Timoshenko beam placed on the Kerr foundation; a sixth-order differential control equation of the tunnel under the action of additional stress is subsequently established for solving the vertical displacement of the tunnel. These theoretical calculation results are then compared with the numerical simulation results and monitoring data. Finally, an optimized foundation pit support scheme is obtained considering the pit corner effect and external corner failure mode. The research shows a high consistency between the monitoring data,analytical and numerical solution, and the closer the tunnel is to the foundation pit, the more uplift deformation will occur. The internal corner of the foundation pit can restrain the deformation of the tunnel and the retaining structure, while the external corner can cause local stress concentration on the diaphragm wall. The proposed optimization scheme can effectively reduce construction costs while meeting the safety requirements of foundation pit support structures.

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

A numerical analysis study on the effects of rock mass anisotropy on tunnel excavation (암반의 이방성이 터널 굴착에 미치는 영향에 대한 수치해석적 연구)

  • Ji-Seok Yun;Sang-Hyeok Shin;Han-Eol Kim;Han-Kyu Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.327-344
    • /
    • 2024
  • In general tunnel design and analysis, rock masses are often assumed to be isotropic. Under isotropic conditions, material properties are uniform in all directions, leading to a higher evaluation of tunnel stability. However, actual rock masses exhibit anisotropic characteristics due to discontinuities such as joints, bedding planes, and faults, which cause material properties to vary with direction. This anisotropy significantly affects the stress distribution during tunnel excavation, leading to non-uniform deformation and increased risk of damage. Therefore, thorough pre-analysis is essential. This study analyzes the displacement and stress changes occurring during tunnel excavation based on rock anisotropy. A three-dimensional numerical analysis was performed, selecting anisotropy index and dip angles as variables. The results showed that as the anisotropy index increased, the displacement in the tunnel increased, and stress concentration became more pronounced. The maximum displacement and shear stress were observed where the dip planes met the tunnel.