• Title/Summary/Keyword: Tunnel CCTV-based accident detection system

Search Result 4, Processing Time 0.015 seconds

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.