• Title/Summary/Keyword: Tuning range

Search Result 446, Processing Time 0.023 seconds

A CMOS Duty Cycle Corrector Using Dynamic Frequency Scaling for Coarse and Fine Tuning Adjustment (코오스와 파인 조정을 위한 다이나믹 주파수 스케일링 기법을 사용하는 CMOS 듀티 사이클 보정 회로)

  • Han, Sangwoo;Kim, Jongsun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.142-147
    • /
    • 2012
  • This paper presents a mixed-mode CMOS duty-cycle corrector (DCC) circuit that has a dynamic frequency scaling (DFS) counter and coarse and fine tuning adjustments. A higher duty-cycle correction accuracy and smaller jitter have been achieved by utilizing the DFS counter that reduces the bit-switching glitch effect of a digital to analog converter (DAC). The proposed circuit has been designed using a 0.18-${\mu}m$ CMOS process. The measured duty cycle error is less than ${\pm}1.1%$ for a wide input duty-cycle range of 25-75% over a wide freqeuncy range of 0.5-1.5 GHz.

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WP AN Application in a 0.13-μm Si RF CMOS Technology

  • Kim, Nam-Hyung;Lee, Seung-Yong;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.295-301
    • /
    • 2008
  • Recently, the demand on mm-wave (millimeter-wave) applications has increased dramatically. While circuits operating in the mm-wave frequency band have been traditionally implemented in III-V or SiGe technologies, recent advances in Si MOSFET operation speed enabled mm-wave circuits realized in a Si CMOS technology. In this work, a 58 GHz CMOS LC cross-coupled VCO (Voltage Controlled Oscillator) was fabricated in a $0.13-{\mu}m$ Si RF CMOS technology. In the course of the circuit design, active device models were modified for improved accuracy in the mm-wave range and EM (electromagnetic) simulation was heavily employed for passive device performance predicttion and interconnection parasitic extraction. The measured operating frequency ranged from 56.5 to 58.5 GHz with a tuning voltage swept from 0 to 2.3 V. The minimum phase noise of -96 dBc/Hz at 5 MHz offset was achieved. The output power varied around -20 dBm over the measured tuning range. The circuit drew current (including buffer current) of 10 mA from 1.5 V supply voltage. The FOM (Figure-Of-Merit) was estimated to be -165.5 dBc/Hz.

AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

  • Cheon, Seong J.;Jang, Woo J.;Park, Hyeon S.;Yoon, Min K.;Park, Jae Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.

Design and Analysis of U-shaped Sampled Grating Distributed Bragg Reflector Lasers (U형 Sampled Grating DBR 레이저 다이오드의 설계 및 분석)

  • Kim, Kyoungrae;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.229-235
    • /
    • 2017
  • A widely tunable U-shaped SGDBR (Sampled Grating Distributed Bragg Reflector) laser diode is designed and analyzed by means of a time-domain simulation. The U-shaped SGDBR laser diode consists of SGDBR, active, phase, and TIR (Total Internal Reflection) mirror sections, so the coupling losses across the sections should be carefully considered. The tuning range of the designed U-shaped SGDBR laser is about 1525-1570 nm, which is confirmed by the simulation. The simulation results show that the loss in the TIR mirror region should be less than about 2 dB, and the refractive-index difference at the butt coupling between the passive and active regions should be less than 0.1, to provide the complete tuning range.

Wide-Tunable Mid Infrared Intra-cavity Optical Parametric Oscillator Based on Multi-period MgO:PPLN

  • Wang, Xiao-Chan;Wang, Yu-Heng;Zheng, Hao;Liu, Hong-Zhi;Yu, Yong-Ji;Wang, Zi-Jian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.59-65
    • /
    • 2021
  • This paper reports a tunable diode-pumped folded intracavity Q-switched singly resonant optical parametric oscillator based on multi-period MgO:PPLN. A wide tuning mid-infrared parametric light from 2.78 ㎛ to 4.17 ㎛ was obtained in real time by changing the poled periods and temperatures. The maximum output power of 1.89 W at 3.2 ㎛, 1.53 W at 3.5 ㎛, 0.87 W at 3.8 ㎛ and 0.486 W at 4.1 ㎛ were achieved. The highest optical-optical conversion efficiency was 7.89%. During experiments, a range tunable output of 2.78-4.17 ㎛ in the mid-infrared range was achieved.

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Index-Coupled DFB Laser (양 단면 반사율과 위상 조정 영역의 위상이 다중 영역 Index-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Ryu, Jong-In;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.548-555
    • /
    • 2006
  • We investigate the effect of the reflectivity of both facets and the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection index-coupled (IC) DFB lasers composed of two index-coupled DFB sections and a phase tuning section between them in terms of yield. In the case of weak coupling strength, as the reflectivity of both facets increases, the effect of reflected fields from both facets and the other DFB section on the mode characteristics of one DFB section increases. Thus the number of mode hoping increases and yield decreases for the variation of phases of both facets. In the case of strong coupling strength, as the reflectivity of both facets increases, the spatial hole burning effect increases, so that the yield decreases. The maximum yield and the range of the phase of a phase tuning section with yield more than 40% decrease as the facet reflectivity increases irrespective of coupling strength. As the coupling strength increases, the variation of yield for the variation of the phase of a phase tuning section increases and the variation of the phase of a phase tuning section with the maximum yield for the variation of the reflectivity of both facets decreases. The yield characteristics of the cases with the coupling strengths of 2 and 3 are better than those with the coupling strengths of 1.2 and 4.

Optimal Design Parameters of Multiple Tuned Liquid Column Dampers for a 76-Story Benchmark Building (76층 벤치마크 건물에 설치된 다중 동조 액체 기둥 감쇠기의 최적 설계 변수)

  • 김형섭;민경원;김홍진;이상현;안상경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.251-258
    • /
    • 2004
  • This paper presents the parameter study of multiple tuned liquid damper (MTLCD) applied to the 76-story benchmark building. A parameter study involves the effects of number of TLCD, frequency range, and central tuning frequency ratio, which are important parameters of MTLCD. The performance of MTLCD is carried out numerical analysis which reflects the nonlinear property of liquid motion. The parameters of TLCD exist different each optimal values according to mass ratio. The performance of single-TLCD (STLCD) is sensitive for tuning frequency ratio. Therefore, MTLCD is proposed to protect such the shortcoming of STLCD. The result of numerical analysis presents improved performance for robustness of MTLCD

  • PDF

A Study on Fuzzy Controller for Autonomous Mobile Robot (자율 이동 로보트의 퍼지 제어기에 관한 연구)

  • 주영훈;황희수;고재원;김성권;황금찬;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1071-1084
    • /
    • 1992
  • In this paper, the method for navigation and obstacle avoidance of the autonomous mobile robot is proposed. The proposed algorithms are based on the fuzzy inference system which is able to deal with imprecise and uncertain information. The self-tuning algorithm, which adopts the simplex method, modifies the parameters of membership functions of the input-output linguistic variables by changing the support of these fuzzy sets according to the integral of absolute error(IAE) of the system response. The wall-follwing navigation and obstacle avoidance of the mobile robot are based on range data measured from the internal sensors(encoder) and the outer sensors(sonar sensor). In addition, the algorithm for the obstacle detection proposed in this paper is based on the expert's experience. Finally, the effectiveness of navigation and obstacle avoidance algorithm is demonstrated through simulation and experiment.

  • PDF

Fabrication and Output Characteristics of a High-Speed Wavelength Swept Mode-Locked Laser (고속 파장가변 모드잠김 레이저의 제작 및 출력특성)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1117-1121
    • /
    • 2007
  • We demonstrate a wavelength swept mode-locked ring laser for the frequency domain optical coherence tomography(FD OCT). A laser is constructed by using a semiconductor optical amplifier, fiber Fabry-Perot tunable filter and 2.6 km fiber ring cavity. Mode-locking is implemented by 2.6 km fiber ring cavity for matching the fundamental or harmonic of cavity roundtrip time to a sweep period. The wavelength sweeps are repetitively generated with the repetition period of 77.2 kHz which is the parallel resonance frequency of Fabry-Perot tunable filter for the low driving current consumption of the fiber Fabry-Perot tunable filter. The wavelength tuning range of the laser is more than FWHM of 61 nm centered at the wavelength of 1320 nm and the linewidth of the source is $0.014{\pm}0.002$ nm.

Construction of High-Speed Wavelength Swept Mode-Locked Laser Based on Oscillation Characteristics of Fiber Fabry-Perot Tunable Filter (광섬유 패브리-페로 파장가변 필터의 공진특성에 기반한 고속 파장가변 모드잠김 레이저의 제작)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1393-1397
    • /
    • 2009
  • A high-speed wavelength swept laser, which is based on oscillation characteristics of a fiber Fabry-Perot tunable filter, is described. The laser is constructed by using a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, and 3.348 km fiber ring cavity. The wavelength sweeps are repeatatively generated with the repetition period of 61 kHz which is the first parallel oscillation frequency of the Fabry-Perot tunable filter for the low power consumption. Mode-locking is implemented by 3.348 km fiber ring cavity for matching the fundamental of cavity roundtrip time to the sweep period. The wavelength tuning range of the laser is 87 nm(FWHM) and the average output power is 1.284 mW.