• Title/Summary/Keyword: Tuning Parameters

Search Result 720, Processing Time 0.033 seconds

A Analysis on the Effect of the Controller Design due to Performance Index (평가지표에 따른 제어기 설계 영향 분석)

  • Yoo, Hang-Youal;Lee, Jung-Kuk;Lee, Keum-Won;Lee, Jun-Mo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.90-94
    • /
    • 2004
  • Among various modern control theories, PID control has been well used for several decades. PID algorithms needs son tuning methods are used for selecting PID parameters. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that controllers, output characteristics and disturbance rejection property meets some specifications. In this paper, linear conbinational type of performance using error signal, time, control input and robustness is used to the PID control of air conditioning system. By the 2 DOF PID parmeters minimizing perfromacne index, controllers, output characteristics and robustness properties are analyzed. Simulations are done with MATLAB m file and mdl files.

  • PDF

An Adaptive Fuzzy Tuning Method for the Speed Control for BLDG Motor Drive (BLDC 전동기의 속도 제어를 위한 적응 퍼지 기법)

  • Kwon, Chung-Jin;Han, Woo-Yong;Kim, Sung-Joong;Lee, Chang-Goo;Lim, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1142-1144
    • /
    • 2003
  • This Paper presents a speed controller based on the adaptive fuzzy tuning method for brushless DC(BLDC) motor drives under load variations. Generally, the speed tracking control systems use PI controller due to its simple structure and easy of design. PI controller, however, suffers from the electrical machine parameter variations and disturbances. In order to improve the tracking control performance under load variations, PI controller of which the parameters are modified during operation by adaptive fuzzy tuning method. This method based on optimal fuzzy logic system has simple structure and computational simplicity. It needs only sample data which is obtained by optimal controller off-line. As the sample data implemented in the adaptive fuzzy system can be modified or extended, a flexible control system can be obtained. Simulation results show the usefulness of the proposed controller.

  • PDF

Control of Helicopter Training Simulator by Self Tuning Control Method

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Lee, Gun-You;Park, Soon-Sil;Oh, Sea-June
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.6-77
    • /
    • 2001
  • R/C helicopter has been used to several fields of military affairs, investigation, searching and toys because it has small size, hovering and vertical take-off characteristics etc. Therefore it needs more realizable control method. The paper introduces simulation and experimental results for control of a helicopter training simulator by self tuning control method. It is assumed that the helicopter is operated at the state of hovering motion and the model is induced. The self tuning control method incorporates the concepts of the well known internal model principle and annihilator polynomial for reference input and disturbance. The controller design is separated into two cases that the plant parameters are known or not. To realize ...

  • PDF

Robust Speed Controller of Induction Motor using Neural Network-based Self-Tuning Fuzzy PI-PD Controller

  • Kim, Sang-Min;Kwon, Chung-Jin;Lee, Chang-Goo;Kim, Sung-Joong;Han, Woo-Youn;Shin, Dong-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.67.1-67
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PI-PD control scheme for robust speed control of induction motor. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PI-PD controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small ...

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

A Nonlinear Speed Control of a Permanent Magnet Synchronous Motor Using a Sequential Parameter Auto-Tuning Algorithm for Servo Equipments (서보 설비를 위한 순차적 파라미터 자동 튜닝 알고리즘을 사용한 영구자석 동기전동기의 비선형 속도 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • A nonlinear speed control of a PMSM using a sequential parameter auto-tuning algorithm for servo equipments is presented. The nonlinear control scheme gives an undesirable output performance under the mismatch of the system parameters and load conditions. Recently, to improve the performance, an adaptive linearization scheme, a sliding mode control and an observer-based technique have been reported. Although a good performance can be obtained, the performance is not satisfactory any more under specific conditions such as a large inertia variation, a fast speed transient or an increased sampling time. The simultaneous estimation of principal parameters giving a direct influence on speed dynamics is generally not simple. To overcome this problem, a a sequential parameter auto-tuning algorithm at start-up is proposed, where dominant parameters are estimated in a prescribed regular sequence based on the method that one parameter is estimated during each interval. The proposed scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through simulations and experiments.

A Design of 2 DOF PID Controller Using Performance Index (평가지표를 이용한 2자유도 PID제어기 설계)

  • 유항열;이정국;이금원;이준모
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • PID control has been well used for several decades. For PID algorithms, some tuning methods are used for selecting PID parameters and with these selected parameters, PID control system is designed. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that the designed control system meets the some specifications. For 2 DOF PID controller design this paper presents a linear combinational type of performance indices constituting of index for robust performance, which is obtained by h infinity norm of a weighted complementary sensitivity function, including other time domain indices such as error, energy and changing rate of control input. By numerical methods, the optimal 2 DOF PID parameters are obtained. Therefore various types of 2 degree of freedom PID controllers such as I-PD controller are used so that this two degree of freedom PID controllers may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF

Feasibility Study of Google's Teachable Machine in Diagnosis of Tooth-Marked Tongue

  • Jeong, Hyunja
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.206-212
    • /
    • 2020
  • Background: A Teachable Machine is a kind of machine learning web-based tool for general persons. In this paper, the feasibility of Google's Teachable Machine (ver. 2.0) was studied in the diagnosis of the tooth-marked tongue. Methods: For machine learning of tooth-marked tongue diagnosis, a total of 1,250 tongue images were used on Kaggle's web site. Ninety percent of the images were used for the training data set, and the remaining 10% were used for the test data set. Using Google's Teachable Machine (ver. 2.0), machine learning was performed using separated images. To optimize the machine learning parameters, I measured the diagnosis accuracies according to the value of epoch, batch size, and learning rate. After hyper-parameter tuning, the ROC (receiver operating characteristic) analysis method determined the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of the machine learning model to diagnose the tooth-marked tongue. Results: To evaluate the usefulness of the Teachable Machine in clinical application, I used 634 tooth-marked tongue images and 491 no-marked tongue images for machine learning. When the epoch, batch size, and learning rate as hyper-parameters were 75, 0.0001, and 128, respectively, the accuracy of the tooth-marked tongue's diagnosis was best. The accuracies for the tooth-marked tongue and the no-marked tongue were 92.1% and 72.6%, respectively. And, the sensitivity (TPR) and specificity (FPR) were 0.92 and 0.28, respectively. Conclusion: These results are more accurate than Li's experimental results calculated with convolution neural network. Google's Teachable Machines show good performance by hyper-parameters tuning in the diagnosis of the tooth-marked tongue. We confirmed that the tool is useful for several clinical applications.

New Optimal Tuning Method of IMC-PID for SI/SO Systems (단일 입출력 시스템에 대한 IMC-PID의 새로운 최적 동조법)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.213-217
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain, phase margin and maximum magnitude of sensitivity function, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

  • PDF