• Title/Summary/Keyword: Tuning Algorithm

Search Result 762, Processing Time 0.024 seconds

Study on Concurrent Simulation Technique of Matlab CMDPS and A CarSim Base Full Car Model (매트랩 CMDPS와 카심 기반 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bongchoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1555-1560
    • /
    • 2013
  • The Column type Motor Driven Power Steering(CMDPS) systems are generally equipped among passenger vehicles ensuring better vehicle safety and fuel economy. In general to analyze systems and to develop a controller a full vehicle model from CarSim developed by Mechanical Simulation Incorporation interacting with MDPS control algorithm from Matlab Simulink was concurrently simulated. This paper describes the development of concurrent simulation technique in detail for analyzing Matlab Simulink MDPS control system with a dynamic vehicle system because the specific method has not been revealed in detail. The steering wheel angle input was evaluated and well compared with proving ground experimental data. The comparisons from concurrent simulation show an effective way to develop and validate the control algorithm. This concurrent simulation capability will be efficiently used for CMDPS performance evaluation and logic tuning as well as for vehicle handling performance.

A Study on the Design of Classifier for Urine Analysis System (요분석 시스템의 분류기 설계에 관한 연구)

  • 전계록;김기련;예수영;김철한;정도운;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.193-201
    • /
    • 2003
  • In this paper, a classifier of urine analysis system was designed using preprocessing and fuzzy algorithm. Preprocessing were processed by normalizing data of strip using calibration curve composed of achromatic colors value and by calculating three stimulus. FUZZY classifier capable of analyzing a qualitative concentration of test items was composed of fuzzifier by gaussian shaped membership function, inference of MIN method, and defuzzifier of centroid method through verification by measuring standard solution and by classifying concentration classes. After tuning membership function according to relating standard solution with urinalysis sample, the possibility to adapt classifier designed for urine analysis system near a bed was verified as classifying measured urinalysis samples and observing classified result. Of all test items, experimental results showed a satisfactory agreement with test results of reference system.

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

A Local Tuning Scheme of RED using Genetic Algorithm for Efficient Network Management in Muti-Core CPU Environment (멀티코어 CPU 환경하에서 능률적인 네트워크 관리를 위한 유전알고리즘을 이용한 국부적 RED 조정 기법)

  • Song, Ja-Young;Choe, Byeong-Seog
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • It is not easy to set RED(Random Early Detection) parameter according to environment in managing Network Device. Especially, it is more difficult to set parameter in the case of maintaining the constant service rate according to the change of environment. In this paper, we hypothesize the router that has Multi-core CPU in output queue and propose AI RED(Artificial Intelligence RED), which directly induces Genetic Algorithm of Artificial Intelligence in the output queue that is appropriate to the optimization of parameter according to RED environment, which is automatically adaptive to workload. As a result, AI RED Is simpler and finer than FuRED(Fuzzy-Logic-based RED), and RED parameter that AI RED searches through simulations is more adaptive to environment than standard RED parameter, providing the effective service. Consequently, the automation of management of RED parameter can provide a manager with the enhancement of efficiency in Network management.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.

A Best Effort Classification Model For Sars-Cov-2 Carriers Using Random Forest

  • Mallick, Shrabani;Verma, Ashish Kumar;Kushwaha, Dharmender Singh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.

Experimental Study on Application of an Anomaly Detection Algorithm in Electric Current Datasets Generated from Marine Air Compressor with Time-series Features (시계열 특징을 갖는 선박용 공기 압축기 전류 데이터의 이상 탐지 알고리즘 적용 실험)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2021
  • In this study, an anomaly detection (AD) algorithm was implemented to detect the failure of a marine air compressor. A lab-scale experiment was designed to produce fault datasets (time-series electric current measurements) for 10 failure modes of the air compressor. The results demonstrated that the temporal pattern of the datasets showed periodicity with a different period, depending on the failure mode. An AD model with a convolutional autoencoder was developed and trained based on a normal operation dataset. The reconstruction error was used as the threshold for AD. The reconstruction error was noted to be dependent on the AD model and hyperparameter tuning. The AD model was applied to the synthetic dataset, which comprised both normal and abnormal conditions of the air compressor for validation. The AD model exhibited good detection performance on anomalies showing periodicity but poor performance on anomalies resulting from subtle load changes in the motor.

Service Differentiation Scheme Based on Burst Size Controlling Algorithm in Optical Internet (광 인터넷에서 버스트 크기 제어 알고리즘 기반 서비스 차등화 기법)

  • Lee, Yonggyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.562-570
    • /
    • 2022
  • The supply expansion of 5G services and personal smart devices has caused the sharp increase of data traffic and the demand of various services. Again, these facts have resulted in the huge demand of network bandwidth. However, existing network technologies using electronic signal have reached the limit to accommodate the demand. Therefore, in order to accept this request, optical internet has been studied actively. However, optical internet still has a lot of problems to solve, and among these barriers a very urgent issue is to develop QoS technologies. Hence, in order to achieve service differentiation between classes in optical internet, especially in OBS network, a new QoS method automatically tuning the size of data bursts is proposed in this article. Especially, the algorithm suggested in this article is based on fiber delay line.

Darknet Traffic Detection and Classification Using Gradient Boosting Techniques (Gradient Boosting 기법을 활용한 다크넷 트래픽 탐지 및 분류)

  • Kim, Jihye;Lee, Soo Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.371-379
    • /
    • 2022
  • Darknet is based on the characteristics of anonymity and security, and this leads darknet to be continuously abused for various crimes and illegal activities. Therefore, it is very important to detect and classify darknet traffic to prevent the misuse and abuse of darknet. This work proposes a novel approach, which uses the Gradient Boosting techniques for darknet traffic detection and classification. XGBoost and LightGBM algorithm achieve detection accuracy of 99.99%, and classification accuracy of over 99%, which could get more than 3% higher detection accuracy and over 13% higher classification accuracy, compared to the previous research. In particular, LightGBM algorithm could detect and classify darknet traffic in a way that is superior to XGBoost by reducing the learning time by about 1.6 times and hyperparameter tuning time by more than 10 times.