• Title/Summary/Keyword: Tungsten alloy

Search Result 186, Processing Time 0.022 seconds

Effect of PWHT on Variability of fatigue Crack Propagation Resitance in TIG Welded Al 6013-T4 Aluminum Alloy (TIG 용접된 Al6013-T4 알루미늄 합금에서 피로균열전파저항의 변동성에서의 PWHT의 영향)

  • Haryadi, Gunawan Dwi;Lee, Sang-Yeul;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • The experimental investigation focuses on an influence of artificial aging time in longitudinal butt welded Al 6013-T4 aluminum alloy on the fatigue crack growth resistance. The preferred welding processes for this alloy are frequently tungsten inert gas welding (TIG) process due to its comparatively easier applicability and better weldability than other gas metal arc welding. Fatigue crack growth tests were carried out on compact tension specimens (CT) in longitudinal butt TIG welded after T82 heat treatment was varied in three artificial aging times of 6 hours, 18 hours and 24 hours. Of the three artificial aging times, 24 hours of artificial aging time are offering better resistance against the growing fatigue cracks. The superior fatigue crack growth resistance preferred spatial variation of materials within each specimen in the Paris equation based on reliability theory and fatigue crack growth rate by crack length are found to be the reasons for superior fatigue resistance of 24 hours of artificial aging time was compared to other joints. The highest of crack propagation resistance occurs in artificial aging times of 24 hours due to the increase in grain size (fine grained microstructures).

The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy

  • Zhang, T.;Du, W.Y.;Zhan, C.Y.;Wang, M.M.;Deng, H.W.;Xie, Z.M.;Li, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2801-2808
    • /
    • 2022
  • The synergistic effect of ZrC nanoparticle pining and Re solution in W matrix on the thermal stability of tungsten was studied by investigating the evolution of the microstructure, hardness and tensile properties after annealing in a temperature range of 1000-1700 ℃. The results of metallography, electron backscatter diffraction pattern and Vickers micro-hardness indicate that the rolled W-1wt%Re-0.5 wt% ZrC alloy has a higher recrystallization temperature (1600 ℃-1700 ℃) than that of the rolled pure W (1200 ℃), W-0.5 wt%ZrC (1300 ℃), W-0.5 wt%HfC (1400-1500 ℃) and W-K-3wt%Re alloy fabricated by the same technology. The molecular dynamics simulation results indicated that solution Re atoms in W matrix can slow down the self-diffusion of W atoms and form dragging effect to delay the growth of W grain, moreover, the diffusion coefficient decrease with increasing Re content. In addition, the ZrC nanoparticles can pin the grain boundaries and dislocations effectively, preventing the recrystallization. Therefore, synergistic effect of solid solution Re element and dispersed ZrC nanoparticles significantly increase recrystallization temperature.

Study on the Improving Penetration Performance of Tungsten Heavy Alloy Penetrator by Heat Treatment (열처리 공정을 통한 텅스텐 중합금 관통자의 관통능력 향상에 관한 연구)

  • Kim, Myunghyun;Noh, Jooyoung;Lee, Youngwoo;An, Daehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.322-327
    • /
    • 2020
  • An Armor Piercing Fin Stabilized Discarding Sabot (APFSDS), which penetrates and sabotages the target by physical energy, consists of a general penetrator using Depleted Uranium (DU) or Tungsten Heavy Alloy (THA) but THA is preferable because of manufacturing and environmental issues. On a THA penetrator, the penetration performance is determined mainly by self-sharpening depending on the hardness and toughness of materials. In particular, the tensile strength and impact strength work as key factors. The correlation coefficient for the penetration performance of the tensile strength was 0.721 and the impact strength was -0.599. The improved penetration performance by additional heat treatment was proven experimentally. Therefore, maintaining elongation over 9 % and tensile strength over 123 kg/㎟ is desirable, and the impact strength should be less than 6.8 kg·m/㎠ for good penetration performance.