• Title/Summary/Keyword: Tuned resonant controller

Search Result 9, Processing Time 0.026 seconds

Novel Control Strategy for a UPQC under Distorted Source and Nonlinear Load Conditions

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 2013
  • This paper proposes a novel control strategy for a unified power quality conditioner (UPQC) including a series and a shunt active power filter (APF) to compensate the harmonics in both the distorted supply voltage and the nonlinear load current. In the series APF control scheme, a proportional-integral (PI) controller and a resonant controller tuned at six multiples of the fundamental frequency of the network ($6{\omega}_s$) are performed to compensate the harmonics in the distorted source. Meanwhile, a PI controller and three resonant controllers tuned at $6n{\omega}_s$(n=1, 2, 3) are designed in the shunt APF control scheme to mitigate the harmonic currents produced by nonlinear loads. The performance of the proposed UPQC is significantly improved when compared to that of the conventional control strategy thanks to the effective design of the resonant controllers. The feasibility of the proposed UPQC control scheme is validated through simulation and experimental results.

Enhanced Proportional-Resonant Current Controller for Unbalanced Stand-alone DFIG-based Wind Turbines

  • Phan, Van-Tung;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.443-450
    • /
    • 2010
  • An enhanced control strategy for variable-speed unbalanced stand-alone doubly-fed induction generator-based wind energy conversion systems is proposed in this paper. The control scheme is applied to the rotor-side converter to eliminate stator voltage imbalance. The proposed current controller is developed based on the proportional-resonant regulator, which is implemented in the stator stationary reference frame. The resonant controller is tuned at the stator synchronous frequency to achieve zero steady-state errors in rotor currents without decomposing the positive and negative sequence components. The computational complexity of the proposed control algorithm is greatly simplified, and control performance is significantly improved. Finally, simulations and experimental results are presented to verify the feasibility and the robustness of the proposed control scheme.

An Effective Rotor Current Controller for Unbalanced Stand-Alone DFIG Systems in the Rotor Reference Frame

  • Phan, Van-Tung;Lee, Hong-Hee;Chu, Tae-Won
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.724-732
    • /
    • 2010
  • This paper presents an effective rotor current controller for variable-speed stand-alone doubly fed induction generator (DFIG) systems feeding an unbalanced three-phase load. The proposed current controller is developed based on proportional plus two resonant regulators, which are tuned at the positive and negative slip frequencies and implemented in the rotor reference frame without decomposing the positive and negative sequence components of the measured rotor current. In addition, the behavior of the proposed controller is examined in terms of control performance and stability with respect to rotor speed variations, i.e., slip frequency variations. Simulations and experimental results are shown to validate the robustness and effectiveness of the proposed control method.

DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System (직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델)

  • Noh, Eun-Chong;Lee, Sang-Min;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

A Fuzzy Self-Tuning PID Controller with a Derivative Filter for Power Control in Induction Heating Systems

  • Chakrabarti, Arijit;Chakraborty, Avijit;Sadhu, Pradip Kumar
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1577-1586
    • /
    • 2017
  • The Proportional-Integral-Derivative (PID) controller is still the most widespread control strategy in the industry. PID controllers have gained popularity due to their simplicity, better control performance and excellent robustness to uncertainties. This paper presents the optimal tuning of a PID controller for domestic induction heating systems with a series resonant inverter for controlling the induction heating power. The objective is to design a stable and superior control system by tuning the PID controller with a derivative filter (PIDF) through Fuzzy logic. The paper also compares the performance of the Fuzzy PIDF controller with that of a Ziegler-Nichols PID controller and a fine-tuned PID controller with a derivative filter. The system modeling and controllers are simulated in MATLAB/SIMULINK. The results obtained show the effectiveness and superiority of the proposed Fuzzy PID controller with a derivative filter.

Single-Phase Inverter for Grid-Connected and Intentional Islanding Operations in Electric Utility Systems

  • Lidozzi, Alessandro;Lo Calzo, Giovanni;Solero, Luca;Crescimbini, Fabio
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.704-716
    • /
    • 2016
  • Small distributed generation units are usually connected to the main electric grid through single-phase voltage source inverters. Grid operating conditions such as voltage and frequency are not constant and can fluctuate within the range values established by international standards. Furthermore, the requirements in terms of power factor correction, total harmonic distortion, and reliability are getting tighter day by day. As a result, the implementation of reliable and efficient control algorithms, which are able to adjust their control parameters in response to changeable grid operating conditions, is essential. This paper investigates the configuration topology and control algorithm of a single-phase inverter with the purpose of achieving high performance in terms of efficiency as well as total harmonic distortion of the output current. Accordingly, a Second Order Generalized Integrator with a suitable Phase Locked Loop (SOGI-PLL) is the basis of the proposed current and voltage regulation. Some practical issues related to the control algorithm are addressed, and a solution for the control architecture is proposed, based on resonant controllers that are continuously tuned on the basis of the actual grid frequency. Further, intentional islanding operation is investigated and a possible procedure for switching from grid-tied to islanding operation and vice-versa is proposed.

Improved DPC Strategy of Grid-connected Inverters under Unbalanced and Harmonic Grid Conditions

  • Shen, Yongbo;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2014
  • This paper presents an improved direct power control (DPC) strategy for grid-connected voltage source inverter (VSI) under unbalanced and harmonic grid voltage conditions. Based on the mathematic model of VSI with the negative sequence, 5th and 7th harmonic voltage components consideration, a PI controller is used in the proposed DPC strategy to achieve the average output power regulation. Furthermore, vector PI controller with the resonant frequency tuned at the two times and six times grid fundamental frequency is adopted to regulate both negative and harmonic components, and then two alternative targets of the balanced/sinusoidal current and smooth active/reactive output power can be achieved. Finally, simulation results based on MATLAB validate the availability of the proposed DPC strategy.

Secondary Side Output Voltage Stabilization of an IPT System by Tuning/Detuning through a Serial Tuned DC Voltage-controlled Variable Capacitor

  • Tian, Jianlong;Hu, Aiguo Patrick;Nguang, Sing Kiong
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.570-578
    • /
    • 2017
  • This paper proposes a method to stabilize the output voltage of the secondary side of an Inductive Power Transfer (IPT) system through tuning/detuning via a serial tuned DC Voltage-controlled Variable Capacitor (DVVC). The equivalent capacitance of the DVVC changes with the conduction period of a diode in the DVVC controlled by DC voltage. The output voltage of an IPT system can be made constant when this DVVC is used as a variable resonant capacitor combined with a PI controller generating DC control voltage according to the fluctuations of the output voltage. Since a passive diode instead of an active switch is used in the DVVC, there are no active switch driving problems such as a separate voltage source or gate drivers, which makes the DVVC especially advantageous when used at the secondary side of an IPT system. Moreover, since the equivalent capacitance of the DVVC can be controlled smoothly with a DC voltage and the passive diode generates less EMI than active switches, the DVVC has the potential to be used at much higher frequencies than traditional switch mode capacitors.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.